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In this paper, using the exponential conformal map for the Hankel contour we 
show a new Schläfli-type integral representation for the Wright function. We apply 
the steepest descent method and the Lagrange expansion to find the asymptotic 
expansions of Wright function for the large parameter. We study two cases for the 
stationary points and discuss the associated asymptotic expansions. The results 
extend the asymptotic expansions of the Bessel functions of the first and second 
kinds.
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1. Introduction and preliminaries

1.1. Definitions and notations

The Wright function introduced by Edward Maitland Wright [38–40]

W (c, d; z) =
∞∑

n=0

zn

n!Γ(cn + d) , c > −1, d ∈ C, z ∈ C, (1.1)

is a particular case of the generalized hypergeometric functions. This function along with the Mittag-Leffler 
function [14] are two important special functions and have pivotal roles in the theory of fractional calculus 
and associated structures in the applied mathematics, for example see [1–8,11–13,15–18,21,23–26,36,37]. 
The problem of the asymptotic behavior of the Wright function for large values of z was stated by Wright 
[39–41] and this property and more geometric properties were developed by other researchers [9,19,20,22,
28–30,32]. The interested reader is referred to the cited references in the historical and bibliographical notes
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Fig. 1. The Hankel contour for Wright function W (c, d; z).

Fig. 2. The associated contours for the functions H(1)(c, d; z) and H(2)(c, d; z).

in [14, Chapter 7]. An alternative representation for the Wright function is considered in the literature by 
the following integral representation [31]

W (c, d; z) = 1
2πi

∫
Ha

t−det+zt−c

dt, c > −1, d ∈ C, z ∈ C, (1.2)

where Ha is the Hankel contour presented in Fig. 1. Here, we set the modified Wright function

W (c, d; z) = zd−1

2d−1W (c, d;−zc+1

2c+1 ) = 1
2πi

∫
Ha

t−de
z
2 (t−t−c)dt, | arg(z)| < π

2 , (1.3)

as generalization of the Bessel function of first kind [35]

Jν(z) = zν

2ν W (1, ν + 1;−z2

4 ) = 1
2πi

∫
Ha

t−ν−1e
z
2 (t−t−1)dt, | arg(z)| < π

2 , (1.4)

and intend to use the steepest descent method and get the asymptotic expansion of Wright function (1.3)
for the large parameter d and the large value z, simultaneously. Motivated by the asymptotic expansion of 
the Bessel function for large parameter ν [35], we define two modifications of the Wright function denoted 
by H(1)(c, d; z) and H(2)(c, d; z) in the following forms

H(j)(c, d; z) = 1
iπ

∫
Lj

t−de
z
2 (t−t−c)dt, c > −1, d ∈ C, | arg(z)| < π

2 , j = 1, 2, (1.5)

where L1 and L2 are shown in Fig. 2. It is obvious that the Wright function can be interpreted as

W (c, d; z) = 1 [
H(1)(c, d; z) + H(2)(c, d; z)

]
. (1.6)
2
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Fig. 3. The mapped contours corresponding to (1.7) (left) and (1.8) (right), respectively.

We apply the map t = eu and set ν = d − 1 in (1.2) and (1.5) to get new integral representations as

W (c, ν + 1; z) = 1
2πi

∫
L

eze
1−c
2 u sinh( 1+c

2 u)−νudu, c > −1, ν ∈ C, | arg(z)| < π

2 , (1.7)

H(j)(c, ν + 1; z) = 1
πi

∫
Lj+2

eze
1−c
2 u sinh( 1+c

2 u)−νudu, c > −1, ν ∈ C, | arg(z)| < π

2 , j = 1, 2, (1.8)

where L , L3 and L4 are the mapped contours in the u-plane shown in Fig. 3. The integral (1.7) is a 
generalization of the Schläfli integral which has been stated in the literature [35].

1.2. Steepest descent method

Theorem 1.1. [10,27,33] Let

I(ν) =
∫
C

g(u)eνh(u)du, (1.9)

be an integral with the analytic functions g and h in a region including C, such that

drh(u)
dur

∣∣∣
u=u0

= 0, r = 1, 2, . . . , n− 1, dnh(u)
dun

∣∣∣
u=u0

= aeiα, a > 0, (1.10)

and u − u0 = ρeiθ. Then, the directions of steepest descent at the stationary point u = u0 (the roots of 
equation h′(u) = 0) are given by

θr = −α

n
+ (2r + 1)π

n
, r = 0, 1, . . . , n− 1, (1.11)

and the steepest descent curves are obtained by �(h(u)) = �(h(u0)). Moreover, the following leading asymp-
totic term holds for I(ν)

I(ν) ∼ g0

n

( n!
ν|h(n)(u0)|

) β
n Γ(β

n
)eνh(u0)+iβθr , r = 0, 1, · · · , n− 1, (1.12)

where for small “o” we have

g(u) = g0(u− u0)β−1 + o(u− u0)β−1, �(β) > 0. (1.13)
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Theorem 1.2. (Lagrange’s Theorem [34]) Let z be the root of z = a + ug(z) which has the value z = a when 
u = 0. Also, g(z) is analytic inside and on a circle C containing z = a. Then, for the analytic function f(z)
inside and on C, we have

f(z) = f(a) +
∞∑

n=1

un

n!
dn−1

dan−1 {f
′(a)[g(a)]n}. (1.14)

In order to employ the steepest descent method for the integral (1.3), at first step we set

z = x = νλ, x, ν ∈ R, (1.15)

h(u) = λe
1−c
2 u sinh(1 + c

2 u) − u, (1.16)

and represent the desired functions as

W (c, ν + 1; νλ) = 1
2πi

∫
L

eνh(u)du = 1
2πi

∞+iπ∫
∞−iπ

eνh(u)du, (1.17)

H(1)(c, ν + 1; νλ) = 1
2πi

∫
L3

eνh(u)du = 1
2πi

∞+iπ∫
−∞

eνh(u)du, (1.18)

H(2)(c, ν + 1; νλ) = 1
2πi

∫
L4

eνh(u)du = 1
2πi

∞−iπ∫
−∞

eνh(u)du. (1.19)

We consider the equation h′(u) = 0 and find the stationary point u0 = p0 + iq0 as the root of following 
equation

d

du
h(u) = λ

1 − c

2 e
1−c
2 u sinh

(
1 + c

2 u

)
+ λ

1 + c

2 e
1−c
2 u cosh

(
1 + c

2 u

)
− 1 = 0, (1.20)

which leads to

λ = x

ν
= 2

eu0 + ce−cu0
= 2

(ep0 cos q0 + ce−cp0 cos cq0) + i (ep0 sin q0 − ce−cp0 sin cq0)
. (1.21)

In comparison with (1.15), for λ ∈ R+ we establish the following the transcendental equation as the necessary 
condition for the stationary point u0 = p0 + iq0

ep0 sin q0 − ce−cp0 sin(cq0) = 0, c > −1, (1.22)

and present the graph of the stationary points in Fig. 4 for the values of −1 < c ≤ 1 and c > 1. We note 
that a conjugate property is valid between the stationary points. It means that, when u0 = p0 + iq0 is a 
stationary point, then u0 = p0 − iq0 is a stationary point too.

Remark 1.3. In the special case c = 1, the relation (1.22) is reduced to

sinh(p0) sin(q0) = 0, (1.23)

which implies that for the case p0 = 0, we have two stationary points ±iq0, and for the case q0 = 0 we have 
the line q = 0 presented in Fig. 4.
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Fig. 4. The curves of stationary points for the equation (1.22) for −1 < c ≤ 1 (left) and c > 1 (right).

Now, in view of the necessary condition (1.22), we rewrite the parameter λ and the function h as follows

λ = 2
ep0 cos q0 + ce−cp0 cos cq0

∈ R+, (1.24)

h(u) = h(p, q) =
[

ep cos q − e−cp cos cq
ep0 cos(q0) + ce−cp0 cos(cq0)

− p

]
+ i

[
e−cp sin q + ep sin q

ep0 cos(q0) + ce−cp0 cos(cq0)
− q

]
. (1.25)

We apply the different strategies to find the steepest descent curve for finding the asymptotic expansion of 
Wright function in the stationary point u0 = p0 + iq0. Our study is divided into two cases for u0 = p0 + iq0
as the real point and the complex point. We organize the remaining of paper as follows. In Section 2, for 
the real stationary point u0 = p0 > 0 and c > −1, we find the asymptotic expansion of Wright function 
using the steepest descent and Lagrange theorems. In Section 3, the asymptotic expansions are concerned 
to the complex stationary point u0 = p0 + iq0 and c > 0. All results generalize the asymptotic expansions 
of the Bessel functions of first and second kinds Jν(z) and Yν(z)

Jν(z) =
∞∑
k=0

(−1)kz2k+ν

22k+νk!Γ(ν + k + 1) , (1.26)

Yν(z) = csc(πν)[Jν(z) cos(πν) − J−ν(z)], ν /∈ Z. (1.27)

Finally, the concluding remarks are given.

2. The real stationary point

In this case, for c > −1 we have the real stationary point u0 = p0 ∈ R and in this section, the relations 
(1.24) and (1.25) are simplified to

λ = 2
ep0 + ce−cp0

, (2.1)

h(u) = h(p, q) =
[
ep cos q − e−cp cos cq

ep0 + ce−cp0
− p

]
+ i

[
e−cp sin q + ep sin q

ep0 + ce−cp0
− q

]
. (2.2)

In this respect, we should generally mention that the steepest descent curves for p0 < 0 does not follow the 
contour L and we ignore this case. Therefore, we state the following theorem for p0 ≥ 0.

Theorem 2.1. For c > −1 and p0 ≥ 0, the following leading asymptotic term with an order estimate holds 
for the Wright function
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Fig. 5. The steepest descent curve ep sin (q) + e−cp sin (cq) = q(ep0 + ce−cp0 ) for c > −1 and p0 ≥ 0.

W (c, ν + 1;λν) =

√
ep0 + ce−cp0

2πν(ep0 − c2e−cp0)e
ν

⎡
⎣ ep0 − e−cp0

ep0 + ce−cp0
−p0

⎤
⎦ (

1 + O( 1√
ν

)
)
, ν → ∞, (2.3)

where for c ≥ 1, p0 �= ln(c2)
c+1 .

Proof. In this case, the stationary point is u0 = p0 and consequently the relation (2.2) gives rise to

h(u0) = eu0 − e−cu0

ep0 + ce−cp0
− u0. (2.4)

In order to find the steepest descent curve, it is sufficient to consider the equation �(h(u)) = �(h(u0)) = 0
and obtain the following relation for the desired curve [33]

ep sin (q) + e−cp sin (cq) =
(
ep0 + ce−cp0

)
q, c > −1, p0 ≥ 0. (2.5)

It is obvious that the curve (2.5) is symmetric with respect to the p-axis, when q varies from −π to π, the 
conjugate contours C1 and C2 are begun from u0 = p0 and ended with ∞ ± iπ, respectively. See Fig. 5 for 
the nonnegative part of p-axis. At this point, in view of Fig. 3 and (1.7), we can present

W (c, ν + 1;λν) = 1
2πi

∫
C1

eνh(u)du− 1
2πi

∫
C2

eνh(u)du, ν → ∞, (2.6)

with the following values for the function h

h(u) = eu − e−cu

ep0 + ce−cp0
− u, h′(u) = eu + ce−cu

ep0 + ce−cp0
− 1, h′′(u) = eu − c2e−cu

ep0 + ce−cp0
. (2.7)

Here, for c > −1 and p0 ≥ 0, we take into account the values

h′(p0) = 0, h′′(p0) �= 0, α = arg(h′′(p0)) = 0,

and establish the condition p0 �= ln(c2)
c+1 for c ≥ 1. We also use the asymptotic expansion theorem to get

∫
eνh(u)du =

√
π(ep0 + ce−cp0)

2ν(ep0 − c2e−cp0)e
ν

⎡
⎣ ep0 − e−cp0

ep0 + ce−cp0
−p0

⎤
⎦+iθ1 (

1 + O( 1√
ν

)
)
, (2.8)
C1
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∫
C2

eνh(u)du =

√
π(ep0 + ce−cp0)

2ν(ep0 − c2e−cp0)e
ν

⎡
⎣ ep0 − e−cp0

ep0 + ce−cp0
−p0

⎤
⎦+iθ2 (

1 + O( 1√
ν

)
)
, (2.9)

where θ1 and θ2 are the angels of stationary point u0 = p0 given by

θ1 = [−α

2 − π

2 ]α=0 = −π

2 , θ2 = [−α

2 + π

2 ]α=0 = π

2 . (2.10)

We finally substitute the above relations into (2.6) and complete the proof. �
In the next theorem, we apply the Lagrange expansion formula to establish an asymptotic expansion for 

the Wright function.

Theorem 2.2. For c > −1 and p0 ≥ 0, the following asymptotic expansion holds for the Wright function

W (c, ν + 1;λν) =

√
ep0 + ce−cp0

2πν(ep0 − c2e−cp0)e
ν

⎡
⎣ ep0 − e−cp0

ep0 + ce−cp0
−p0

⎤
⎦ ∞∑
m=0

Dm(
ν( ep0−c2e−cp0

ep0+ce−cp0 )
)m , ν → ∞, (2.11)

where for c ≥ 1, p0 �= ln(c2)
c+1 and Dm ∈ R is given by

Dm = (−1)m

22m+ 1
2m!

(
ep0 − c2e−cp0

ep0 + ce−cp0

)m+ 1
2

⎡
⎣ d2m

dw2m [
∞∑
j=0

μjw
j ]−(m+ 1

2 )

⎤
⎦
w=0

, m = 0, 1, 2, · · · , (2.12)

such that

μ2m = 1
(2m + 2)!

[
ep0 − c2m+2e−cp0

ep0 + ce−cp0

]
,

μ2m+1 = 1
(2m + 3)!

[
ep0 + c2m+3e−cp0

ep0 + ce−cp0

]
, m = 0, 1, 2, · · · . (2.13)

Proof. At first, we set the following map

τ = h(p0) − h(u) =
[
ep0 − e−cp0

ep0 + ce−cp0
− p0

]
−

[
eu − e−cu

ep0 + ce−cp0
− u

]
, (2.14)

and use the relation (2.6) to show

W (c, ν + 1;λν) = e
ν

⎡
⎣ ep0 − e−cp0

ep0 + ce−cp0
−p0

⎤
⎦

2πi

∫
C1′−C2′

e−ντ du

dτ
dτ, (2.15)

where C ′
1 and C ′

2 are the mapped contours in the τ -plane corresponding to the contours C1 and C2 in the 
u-plane, respectively. In this case, for the steepest curves C ′

1 and C ′
2 we have �[τ ] = 0. Therefore, we deduce 

that the contours C ′
1 and C ′

2 are the real axis in the τ -plane. Here, we apply the Taylor expansion and 
present
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τ = − 1
2!

[
ep0 − c2e−cp0

ep0 + ce−cp0

]
(u− p0)2 −

1
3!

[
ep0 + c3e−cp0

ep0 + ce−cp0

]
(u− p0)3

− 1
4!

[
ep0 − c4e−cp0

ep0 + ce−cp0

]
(u− p0)4 + · · · , (2.16)

or equivalently

τ = −(u− p0)2
[
μ0 + μ1(u− p0) + μ2(u− p0)2 + · · ·

]
, (2.17)

where the coefficient μj ∈ R was shown in (2.13). Also, by setting w = u − p0 we can obtain the following 
relation for employing the Lagrange expansion

u− p0 = ±iτ
1
2
[
μ0 + μ1w + μ2w

2 + · · ·
]− 1

2 , (2.18)

where the positive sign in the above relation corresponds to C1 (q > 0) and the negative sign corresponds 
to C2 (q < 0). In this stage, using Lagrange’s theorem we arrive at

u− p0 =
∞∑

n=1

(±i)nτ n
2

n!

[
dn−1

dwn−1 [μ0 + μ1(u− p0) + μ2(u− p0)2 + · · · ]−n
2

]
w=0

. (2.19)

We now substitute (2.19) into (2.15) and consider the inverse functions u+ and u− (related to the positive 
and negative signs, respectively) and apply the Watson lemma to obtain

∫
L ′

e−ντ du

dτ
dτ =

∞∫
0

e−ντ d(u+ − u−)
dτ

dτ

= i

∞∫
0

e−ντ
∞∑

m=0

(−1)ma2m+1

(2m)! τm− 1
2 dτ

∼ i
∞∑

m=0

(−1)ma2m+1

(2m)! Γ(m + 1
2)ν−(m+ 1

2 )

= i
∞∑

m=0

(−1)mΓ(1
2 )a2m+1

2mm! ν−(m+ 1
2 ), (2.20)

where an is given by

an =
[

dn−1

dwn−1 [μ0 + μ1w + μ2w
2 + · · · ]−n

2

]
w=0

, n = 1, 2, · · · , (2.21)

or briefly

a1 = μ
− 1

2
0 =

(
2 ep0 + ce−cp0

ep0 − c2e−cp0

) 1
2

, (2.22)

a2 = −μ−2
0 μ1 = −2

3

(
e2p0 + (c3 + c)e(1−c)p0 + c4e−2cp0

e2p0 − 2c2e(1−c)p0 + c4e−2cp0

)
, (2.23)

... .

Finally, we obtain
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W (c, ν + 1;λν) = e
ν

⎡
⎣ ep0 − e−cp0

ep0 + ce−cp0
−p0

⎤
⎦

2
√
νπ

∞∑
m=0

(−1)ma2m+1

νm22mm! , ν → ∞, (2.24)

which by putting

Dm = (−1)m

22m+ 1
2m!

(
ep0 − c2e−cp0

ep0 + ce−cp0

)m+ 1
2

a2m+1, (2.25)

we present (2.11) and complete the proof. �
Remark 2.3. In the special case c = 1 and in view of (1.4), the relation (2.1) is equivalent to λ = 1

cosh(p0) < 1. 
For this case, the asymptotic expansion of the Bessel function Jν is established as follows [34, p. 389]

Jν(
ν

cosh(p0)
) = 1√

2πν tanh(p0)
e
ν
(

tanh(p0)−p0

)(
1 +

1
8 − 5

24 coth2(p0)
ν tanh(p0)

+ · · ·
)
, ν → ∞. (2.26)

Also, in the special case c = 0, we can find D0 = 1 and D1 = − 1
12 and get the following asymptotic 

expansion for the exponential function

W (0, ν + 1;x) =
(1
2x)ν

Γ(ν + 1)e
−x

2 = 1√
2πν

(1
2x)ν

νν
eν−

x
2 (1 − 1

12ν + · · · ), ν → ∞. (2.27)

Remark 2.4. In order to study the numerical verification, we consider the leading term of (2.11) and show 
the graphs of the relative errors for different values of c and ν = 100 in Fig. 6. It is obvious that these 
presentations refer to the suitable approximations with the very small errors. We should also mention that 
the relative error increases near the point p0 = ln(c2)

c+1 .

3. The complex stationary point

In this case, for c > 0 we have the conjugate stationary points p0 ± iq0 which has been demonstrated in 
Fig. 4. In this sense, we have

λ = 2
ep0 cos(q0) + ce−cp0 cos(cq0)

, q0 �= 0, (3.1)

and mention that the used approach is not valid for the case −1 < c < 0. Therefore, we only restrict 
ourselves to the case c > 0 and recall the relations (1.24) and (1.25) for stating the following theorem.

Theorem 3.1. For c > 0 and u0 = p0 + iq0, the following leading asymptotic term with an order estimate 
holds for the Wright function

W (c, ν + 1;λν) = �
[

2eνh(u0)−iα
2√

2πν|h′′(u0)|

(
1 + O( 1√

ν
)
)]

, α = arg(h′′(u0)), (3.2)

where

u0 �= ln(c2) + i
2kπ

, c + 1 > 2k, k ∈ N. (3.3)
1 + c 1 + c
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Fig. 6. The graphs of the relative errors for the relation (2.11).

Proof. In order to find the steepest descent curve, it is sufficient to set �(h(u)) = �(h(u0)) and obtain 
following equation

ep sin q + e−cp sin (cq) =
[
ep0 cos(q0) + ce−cp0 cos(cq0)

]
(q − q0) + [sin(q0) + sin(cq0)] . (3.4)

The curve (3.4) for the conjugate stationary points p0 ± iq0 has been plotted in Fig. 7. The steepest descent 
curve for u0 = p0 ± iq0 is symmetric with respect to the p-axis. For this case, the curve C5 is conjugate of 
C3, and the curve C6 is conjugate of C4. Moreover, the curve C3 is begun from u0 = p0 + iq0 and ended with 
∞ + iπ, and the curve C4 is begun from u0 = p0 + iq0 and ended with −∞. Now, in view of the relation 
(1.8) and Fig. 3, we have

H(1) (c, ν + 1;λν) = 1
πi

∫
C3−C4

eνh(u)du, ν → ∞, (3.5)

H(2) (c, ν + 1;λν) = 1
πi

∫
C6−C5

eνh(u)du, ν → ∞, (3.6)

with the following values for the function h
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Fig. 7. The steepest descent curves for the relation (3.4).

h(u) = eu − e−cu

ep0 cos(q0) + ce−cp0 cos(cq0)
− u, (3.7)

h′(u) = eu + ce−cu

ep0 cos(q0) + ce−cp0 cos(cq0)
− 1, (3.8)

h′′(u) = eu − c2e−cu

ep0 cos(q0) + ce−cp0 cos(cq0)
, (3.9)

such that h′(u0) = h′(u0) and h′(u0) = h′(p0 + iq0) = 0. Also, for the second derivative of the function h, 
we have

h′′(u0) =
(
ep0 cos(q0) − c2e−cp0 cos(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

)
+ i

(
ep0 sin(q0) + c2e−cp0 sin(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

)
, (3.10)

such that h′′(u0) = h′′(u0) and h′′(u0) = h′′(p0 + iq0) �= 0 (it is clear that the value of h′′(u0) vanishes at 
the point u0 = ln(c2)

1+c + i 2kπ
1+c , k ∈ N). Now, by considering the argument

α = arg(h′′(u0)) = arctan
(
ep0 sin(q0) + c2e−cp0 sin(cq0)
ep0 cos(q0) − c2e−cp0 cos(cq0)

)
, (3.11)

we can establish the following asymptotic behaviors

∫
Cj

eνh(u)du =
√

π

2ν|h′′(u0)|
eνh(u0)+iθj

(
1 + O( 1√

ν
)
)
, j = 3, 4, (3.12)

∫
Cj

eνh(u)du =
√

π

2ν|h′′(ū0)|
eνh(ū0)+iθj

(
1 + O( 1√

ν
)
)
, j = 5, 6, (3.13)

where the angles θj are related to the contours Cj as

θ3 = π − α

2 , θ4 = 3π − α

2 , θ5 = α− π

2 , θ6 = α− 3π
2 . (3.14)

We now substitute (3.12), (3.13) into (3.5), (3.6), respectively, and get

H(1) (c, ν + 1;λν) =
eνh(u0)

(
eiθ3 − eiθ4

)
√

′′

(
1 + O( 1√

ν
)
)
, (3.15)
i 2πν|h (u0)|
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H(2) (c, ν + 1;λν) =
eνh(ū0)

(
eiθ6 − eiθ5

)
i
√

2πν|h′′(ū0)|

(
1 + O( 1√

ν
)
)
. (3.16)

At this point, using the following facts

|h′′(ū)| = |h′′(u)| = |h′′(u)|, (3.17)

and the relationships between the angles θ5 = −θ3, θ6 = −θ4, we arrive at

H(2) (c, ν + 1;λν) =
eνh(u0)

(
e−iθ3 − e−iθ4

)
−i

√
2πν|h′′(u0)|

(
1 + O( 1√

ν
)
)
. (3.18)

Thus, we can deduce

H(2) (c, ν + 1;λν) = H(1) (c, ν + 1;λν), (3.19)

where

H(1) (c, ν + 1;λν) =
eνh(u0)

(
ei(θ3−

π
2 ) − ei(θ4−

π
2 ))√

2πν|h′′(u0)|

(
1 + O( 1√

ν
)
)

(3.20)

= 2eνh(u0)−iα
2√

2πν|h′′(u0)|

(
1 + O( 1√

ν
)
)
. (3.21)

Finally, by taking into account the relation (1.6), we obtain (3.2) from the following relation

W (c, ν + 1;λν) = �
(
H(1) (c, ν + 1;λν)

)
, (3.22)

and complete the proof. �
Corollary 3.2. By the same procedure to Theorem 3.1, for generalization of the Bessel function of second 
kind Yν presented by

Y (c, d; z) = 1
2i

[
H(1)(c, d; z) −H(2)(c, d; z)

]
, (3.23)

we can state the following leading asymptotic term with an order estimate

Y (c, ν + 1;λν) = �
[

2eνh(u0)−iα
2√

2πν|h′′(u0)|

(
1 + O( 1√

ν
)
)]

. (3.24)

Theorem 3.3. For c > 0, the following asymptotic expansion holds for the Wright function

W (c, ν + 1;λν) = �
[

2eνh(u0)− iα
2√

2πν|h′′(u0)|

∞∑
m=0

D′
m

(νh′′(u0))m

]
, α = arg(h′′(u0)), (3.25)

where

u0 �= ln(c2)
1 + c

+ i
2kπ
1 + c

, c + 1 > 2k, k ∈ N, (3.26)

and
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D′
m = (−1)m(h′′(u0))m+ 1

2

22m+ 1
2

⎡
⎣ d2m

dw2m [
∞∑
j=0

ηjw
j ]−(m+ 1

2 )

⎤
⎦
w=0

, m = 0, 1, 2, · · · , (3.27)

such that

η2m = 1
(2m + 2)!

[(
ep0 cos(q0) − c2m+2e−cp0 cos(cq0)

ep0 cos(q0) + ce−cp0 cos(cq0)

)
+ i

(
ep0 sin(q0) + c2m+2e−cp0 sin(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

)]
, (3.28)

η2m+1 = 1
(2m + 3)!

[(
ep0 cos(q0) + c2m+3e−cp0 cos(cq0)

ep0 cos(q0) + ce−cp0 cos(cq0)

)
+ i

(
ep0 sin(q0) − c2m+3e−cp0 sin(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

)]
.

(3.29)

Proof. At first, we consider

h(u0) =
[
ep0 cos(q0) − e−cp0 cos(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

− p0

]
+ i

[
ep0 sin(q0) + e−cp sin(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

− q0

]
, (3.30)

and set the map τ = h(u0) − h(u). In this sense, we use the relations (1.25), (3.5) and (3.6) to show

H(1) (c, ν + 1;λν) = 1
πi

eνh(u0)
∫

C ′
3−C ′

4

e−ντ du

dτ
dτ, (3.31)

H(2) (c, ν + 1;λν) = 1
πi

eνh(u0)
∫

C ′
6−C ′

5

e−ντ du

dτ
dτ, (3.32)

where C ′
j , j = 3, 4, 5, 6, are the contours in the τ -plane corresponding to Cj in the u-plane. In this case, 

�(h(u)) is nonzero and equal to the constant value �(h(u0)) for j = 3, 4, and equal to −�(h(u0)) for 
j = 5, 6. In this regard, by using the Taylor expansion we have

τ = h(u0) − h(u) = − 1
2!h

′′(u0)(u− u0)2 −
1
3!h

(3)(u0)(u− u0)3 −
1
4!h

(4)(u0)(u− u0)4 − · · ·

= − 1
2!

[(
ep0 cos(q0) − c2e−cp0 cos(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

)
+ i

(
ep0 sin(q0) + c2e−cp0 sin(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

)]
(u− (p0 + iq0))2

− 1
3!

[(
ep0 cos(q0) + c3e−cp0 cos(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

)
+ i

(
ep0 sin(q0) − c3e−cp0 sin(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

)]
(u− (p0 + iq0))3

− 1
4!

[(
ep0 cos(q0) − c4e−cp0 cos(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

)
+ i

(
ep0 sin(q0) + c4e−cp0 sin(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

)]
(u− (p0 + iq0))4

− . . . , (3.33)

or equivalently

τ = − (u− (p0 + iq0))2
[
η0 + η1 (u− (p0 + iq0)) + η2 (u− (p0 + iq0))2 + · · ·

]
, (3.34)

where ηj ∈ C are obtained via (3.28) and (3.29). Now, in view of the contours C3 and C4 which correspond 
to the arguments arg (η0) = θ3 and arg (η0) = π+θ3 = θ4, respectively, we show the following representation

u− (p0 + iq0) = ±iτ
1
2
[
η0 + η1w + η2w

2 + · · ·
]− 1

2 , (3.35)

and employ the Lagrange expansion formula to find
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u− (p0 + iq0) =
∞∑

n=1

(±i)nτ n
2

n!

[
dn−1

dwn−1 [η0 + η1w + μ2w
2 + · · · ]−n

2

]
w=0

. (3.36)

We substitute (3.36) into (3.31) and consider the inverse functions u+ and u− to apply the Watson lemma 
as

∫
C ′

3−C ′
4

e−ντ du

dτ
dτ =

∞∫
0

e−ντ d(u+ − u−)
dτ

dτ

= i

∞∫
0

e−ντ
∞∑

m=0

(−1)mb2m+1

(2m)! τm− 1
2 dτ

∼ i

∞∑
m=0

(−1)mb2m+1

(2m)! Γ(m + 1
2)ν−(m+ 1

2 )

= i
∞∑

m=0

(−1)mΓ(1
2 )b2m+1

22mm! ν−(m+ 1
2 ), (3.37)

where the coefficient bn is given by

bn =
[

dn−1

dwn−1 [η0 + η1w + η2w
2 + · · · ]−n

2

]
w=0

, n = 1, 2, · · · , (3.38)

or briefly

b1 = η
− 1

2
0 =

√
2
[
ep0 cos(q0) − c2e−cp0 cos(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

+ i
ep0 sin(q0) + c2e−cp0 sin(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

]− 1
2

, (3.39)

b2 = −η−2
0 η1 = −2

3

[
ep0 cos(q0) − c2e−cp0 cos(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

+ i
ep0 sin(q0) + c2e−cp0 sin(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

]−2

×
[
ep0 cos(q0) + c3e−cp0 cos(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

+ i
ep0 sin(q0) − c3e−cp0 sin(cq0)
ep0 cos(q0) + ce−cp0 cos(cq0)

]
, (3.40)

... .

Consequently, we obtain

H(1) (c, ν + 1;λν) = eνh(u0)

π

∞∑
m=0

(−1)mΓ(1
2 )b2m+1

22mνm+ 1
2m!

, (3.41)

or equivalently

H(1) (c, ν + 1;λν) = 2eνh(u0)− iα
2√

2πν|h′′(u0)|

∞∑
m=0

D′
m

(νh′′(u0))m
, (3.42)

where

D′
m = (−1)m(h′′(u0))m+ 1

2 b2m+1

22m+ 1
2

, h′′(u0) = |h′′(u0)|eiα. (3.43)

Similarly, in view of the conjugate stationary point u0 = p0 − iq0, we can present
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H(2) (c, ν + 1;λν) = H(1) (c, ν + 1;λν) = 2eνh(u0)+ iα
2√

2πν|h′′(u0)|

∞∑
m=0

D′
m(

νh′′(u0)
)m . (3.44)

Finally, we use (1.6) to get

W (c, ν + 1;λν) = �
[

2eνh(u0)− iα
2√

2πν|h′′(u0)|

∞∑
m=0

D′
m

(νh′′(u0))m

]
, (3.45)

and complete the proof. �
Corollary 3.4. By the same procedure to Theorem 3.3, for generalization of the Bessel function of second 
kind Yν we can state the following asymptotic expansion

Y (c, ν + 1;λν) = �
[

2eνh(u0)− iα
2√

2πν|h′′(u0)|

∞∑
m=0

D′
m

(νh′′(u0))m

]
, (3.46)

where D′
m and ηm are given by (3.27), (3.28) and (3.29).

Remark 3.5. In the special case c = 1 and u0 = iq0, we have h(u0) = i (tan(q0) − q0), h′′(u0) = i tan(q0)
and λ = 1

cos(q0) > 1. Thus, an alternative asymptotic expansion of the Bessel function Jν is also established 
as follows [34, p. 392]

Jν(ν sec(q0)) = 2√
2πν tan(q0)

cos
(
ν tan(q0) − νq0 −

π

4

)

+
1
8 + 5

24 cot2(q0)
ν tan(q0)

2√
2πν tan(q0)

sin
(
ν tan(q0) − νq0 −

π

4

)
+ · · · , ν → ∞. (3.47)

Remark 3.6. In order to discuss the numerical verification of (3.25), we should choose the points (p0, q0)
such that the condition (1.22) along with the relation (3.1) hold (for λ > 0). In order to get a suitable 

approximation, we can not follow our computations near the points u0 = ln(c2)
1+c + i 2kπ

1+c , c + 1 > 2k, k ∈ N. 
Summarizing, the point (p0, q0) should satisfy the following system

⎧⎪⎪⎨
⎪⎪⎩

ep0 sin q0 − ce−cp0 sin(cq0) = 0, c > 0,
2

ep0 cos(q0) + ce−cp0 cos(cq0)
> 0, c > 0,

p0 �= ln(c2)
1+c , q0 �= 2kπ

1+c , c + 1 > 2k, k ∈ N.

(3.48)

4. Concluding remarks

In this paper, we considered a generalization of the Schläfli integral for the modification of Wright func-
tion. This integral was established by the exponential map on a contour consists of three sides of a rectangle. 
This contour played a fundamental role in determining the steepest descent curves for asymptotic expan-
sion of the integral. Our discussion was summarized by two cases for the stationary points and associated 
steepest descent curves. In the all cases, we tried to find the steepest descent curves with respect to the 
Schläfli integral contour. In this sense, in Section 3 for the complex stationary point, we had to introduce 
new functions H(j), j = 1, 2, to present the desired curves tending to the Schläfli integral contour. Finally, 
the associated asymptotic expansions were given using the steepest descent and the Lagrange theorem.
Here, we should mention a critical point for the all obtained results. In the all computations, we considered 
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a simple stationary point u0 (h′′(u0) �= 0) for presenting the asymptotic expansions. In the non-simple 
stationary point (h′′(u0) = 0) or near this point, we state the following remarks. In view of the necessary 
condition (1.22) for the steepest descent curve

ep0 sin(q0) − ce−cp0 sin(cq0) = 0, (4.1)

and taking into account the condition

h′′(u0) = eu0 − c2e−cu0

ep0 cos(q0) + ce−p0 cos(cq0)
= 0, u0 = p0 + iq0, (4.2)

we should solve these algebraic equations, simultaneously, and get the non-simple stationary points as

u0 = ln(c2)
1 + c

+ i
2kπ
1 + c

, c + 1 > 2k, k = 0, 1, 2, · · · . (4.3)

When the stationary point is the exact point u0, we should follow the discussion of Section 1 and apply 
Theorem 1.1 for n = 3 to represent the associated asymptotic expansions. See [33, §23.5] for the case c = 1
and representing the Airy-type expansion for the Bessel function Jν(z). When the stationary point is near 
point u0 = ln(c2)

1+c + i 2kπ
1+c , the parameter λ tends to

λ → 2
c

2
1+c cos( 2kπ

1+c ) + c−
2c

1+c cos( 2kcπ
1+c )

, c + 1 > 2k, k = 0, 1, 2, · · · , (4.4)

and in the vicinity of u0, for c ≥ 1 we have

ν = z

(
1
λ
− ε

)
, c ≥ 1, ε > 0, ν ∈ C, z = xeiϕ, |ϕ| = | arg (z)| < π

2 . (4.5)

In this respect, we can consider the following integral

W (c, ν + 1; z) = 1
2πi

∫
L

e
xeiϕ

[
e

1−c
2 u sinh( 1+c

2 u)−u
λ

]
+zεu

du,

= 1
2πi

∞+iπ∫
∞−iπ

e
xeiϕ

[
e

1−c
2 u sinh( 1+c

2 u)−u
λ

]
+zεu

du,

c ≥ 1, ε > 0, ν ∈ C, x ∈ R, |ϕ| < π

2 , (4.6)

and take into account the functions h(u) = eiϕ
[
e

1−c
2 u sinh(1+c

2 u) − u
λ

]
and g(u) = ezεu. Based on the 

steepest descent method, if we now follow the proposed approach in [34, §7.12], then we can approximate 
the integral (4.6) with an upper bound near u0 presented in Figs. 5 and 7. The point u0 = p0 + iq0 in these 
figures are mixed in Fig. 8 for the case c = 1 and u0 = 0 [34, p. 395]. We omit the associated details in this 
case.
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Fig. 8. The steepest decent curve cosh(p) sin(q) = q for c = 1.
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