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1. Introduction and preliminaries
1.1. Definitions and notations

The Wright function introduced by Edward Maitland Wright [38-40]

o0 Zn
Wie,d; z) :Z_%m, c>-1,deC, z€C, (1.1)

is a particular case of the generalized hypergeometric functions. This function along with the Mittag-Leffler
function [14] are two important special functions and have pivotal roles in the theory of fractional calculus
and associated structures in the applied mathematics, for example see [1-8,11-13,15-18,21,23-26,36,37].
The problem of the asymptotic behavior of the Wright function for large values of z was stated by Wright
[39-41] and this property and more geometric properties were developed by other researchers [9,19,20,22,
28-30,32]. The interested reader is referred to the cited references in the historical and bibliographical notes
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Fig. 1. The Hankel contour for Wright function W (e, d; z).
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Fig. 2. The associated contours for the functions H® (¢, d; z) and H® (¢, d; z).

in [14, Chapter 7]. An alternative representation for the Wright function is considered in the literature by
the following integral representation [31]

1 —c
Wie,d;2z) = OB /tidet“t dt, ¢>-1,deC, ze€C, (1.2)
T

Ha

where Ha is the Hankel contour presented in Fig. 1. Here, we set the modified Wright function

2471 P 1 —d_ (=) T
W(C, d, Z) = FW(C, d, —F) = 2—7” /t ez dt7 |arg(z)| < 5, (13)
Ha

as generalization of the Bessel function of first kind [35]

Jo(2) = W1+ 1 22) 1 /fH 00 Jarg(2)] < = (1.4)

v(z) = Wlv+L-—)=5— »lar 3 :
Y 1) o ‘ SIS 3

Ha

and intend to use the steepest descent method and get the asymptotic expansion of Wright function (1.3)
for the large parameter d and the large value z, simultaneously. Motivated by the asymptotic expansion of
the Bessel function for large parameter v [35], we define two modifications of the Wright function denoted
by HY (¢, d; z) and H® (¢, d; z) in the following forms

. 1 z —c
HY (¢, d;z) = — /t_dei(t_t Jdt, ¢>—1, deC, |arg(z)| < g, i=1,2, (1.5)
iT

<

where %, and % are shown in Fig. 2. It is obvious that the Wright function can be interpreted as

Wle,d: z) = % [HO(e,d:2) + HO(e,d: )] (1.6)
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Fig. 3. The mapped contours corresponding to (1.7) (left) and (1.8) (right), respectively.
We apply the map ¢t = e* and set v =d — 1 in (1.2) and (1.5) to get new integral representations as

1 ze%"sinh(ﬂu)—vu m
W(c,u—&—l;z):% e z du, ¢> -1, veC, |arg(z)|<§,
<z

(1.7)

™

j=1,2, (L8
27.] = ( )

. 1 l—c, . ¢

H9 (c,v41;2) = = / e* ? Sm]“(l%“)*”“du, c> -1, veC, |arg(z)| <

i
Zjt2

where %, %5 and %, are the mapped contours in the u-plane shown in Fig. 3. The integral (1.7) is a
generalization of the Schléfli integral which has been stated in the literature [35].

1.2. Steepest descent method

Theorem 1.1. [10,27,33] Let

I(v) z/g(u)e”h(“)du, (1.9)

c

be an integral with the analytic functions g and h in a region including C, such that

drh drh
() -0, r=12...,n—1, (u)

= ae'™ 1.1
du” u=ug dum™ u=ug e @= 0’ ( O)

and u — ug = pe'®. Then, the directions of steepest descent at the stationary point u = ug (the roots of
equation h'(u) = 0) are given by

gr:7g+(2r+]—)ﬁa TZOala"'anfl’ (111)
n n

and the steepest descent curves are obtained by S(h(u)) = S(h(ug)). Moreover, the following leading asymp-
totic term holds for I(v)

3@

9o n! s vh(uo)+iB0
Iv)~~(——+——) T'(— 0 " =0,1,--- ,n—1, 1.12
(V) n (V|h(")(U0)|) (’I”I,)e , T s n ( )

where for small “0” we have

g(u) = go(u —uo)’ " + o(u — ug)®~,  R(B) > 0. (1.13)
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Theorem 1.2. (Lagrange’s Theorem [3]]) Let z be the root of z = a + ug(z) which has the value z = a when
u= 0. Also, g(2) is analytic inside and on a circle C containing z = a. Then, for the analytic function f(z)
inside and on C, we have

+§Zm£;1 F(@)lga)". (.10

In order to employ the steepest descent method for the integral (1.3), at first step we set

z=x=v\ x,vER, (1.15)
—c 1
h(u) = Aezou sinh(%u) —u, (1.16)
and represent the desired functions as
1 1 co+im
Lvd) = — [ e"Way = — vhiv) g 1.1
W (c,v+ 1;v\) i /e u=g - e u, (1.17)
< co—4T
1 1 oco+im
(1) . - vh(u) - = vh(u)
HY (c,v+ 1;v\) 5 /e du 7 / e du, (1.18)
fg —0o0
H®(c,v+1;u)) = = /e”h(")du L / ey, (1.19)
27 2mi
% —0o0

We consider the equation A/(u) = 0 and find the stationary point ug = po + igo as the root of following

equation
d 1-— —c 1 1 —c 1
@h(u):/\ 20612 “sinh( ;_Cu)+)\ 36612 “cosh( ;_Cu>10, (1.20)
which leads to
2 2
Ao ¥ _ — . aa
vooe' 4 cem0  (ePocos gy + ce PO cos cqo) + i (ePo sin gy — ce PO sin cqp)

In comparison with (1.15), for A € Rt we establish the following the transcendental equation as the necessary
condition for the stationary point ug = po + iqo

e’ singg — ce” P sin(cqp) =0, c¢> —1, (1.22)

and present the graph of the stationary points in Fig. 4 for the values of —1 < ¢ < 1 and ¢ > 1. We note
that a conjugate property is valid between the stationary points. It means that, when uy = pg + iqo is a
stationary point, then ug = pg — 7qq is a stationary point too.

Remark 1.3. In the special case ¢ = 1, the relation (1.22) is reduced to
sinh(pg) sin(go) = 0, (1.23)

which implies that for the case py = 0, we have two stationary points +iqg, and for the case gg = 0 we have
the line ¢ = 0 presented in Fig. 4.
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Fig. 4. The curves of stationary points for the equation (1.22) for —1 < ¢ < 1 (left) and ¢ > 1 (right).

Now, in view of the necessary condition (1.22), we rewrite the parameter A and the function h as follows

2

A= e R, (1.24)
ePo cos qg + cePo cos cqg
Pcosq— e P cos “Psi P si
hw) = h(p,q) = | b © 4 _pl+i ¢ Tsmgresmg | (195
ePo cos(qo) + ce=ePo cos(cqp) ePo cos(qo) + cePo cos(cqop)

We apply the different strategies to find the steepest descent curve for finding the asymptotic expansion of
Wright function in the stationary point ug = pg 4 igg. Our study is divided into two cases for ug = pg + iqo
as the real point and the complex point. We organize the remaining of paper as follows. In Section 2, for
the real stationary point ug = pg > 0 and ¢ > —1, we find the asymptotic expansion of Wright function
using the steepest descent and Lagrange theorems. In Section 3, the asymptotic expansions are concerned
to the complex stationary point ug = pg + igp and ¢ > 0. All results generalize the asymptotic expansions
of the Bessel functions of first and second kinds J,(z) and Y, (z)

0 k 2k+u

ZO 22k+vk'r +k+1)
Y, (2z) = csc(mv)[J,(2) cos(mv) — J_,(2)], v ¢ Z. (1.27)

(1.26)

Finally, the concluding remarks are given.
2. The real stationary point

In this case, for ¢ > —1 we have the real stationary point ug = pg € R and in this section, the relations
(1.24) and (1.25) are simplified to

2
A= ———— (2.1)
ePo 4 ce—cpPo
eP cosq — e~ P cos cq } ) {e”’ sinq + eP sin q

ePo + ce—¢Po ePo + ce—cpPo

h(u) = h(p,q) =

(2.2)

In this respect, we should generally mention that the steepest descent curves for py < 0 does not follow the
contour .Z and we ignore this case. Therefore, we state the following theorem for py > 0.

Theorem 2.1. For ¢ > —1 and pg > 0, the following leading asymptotic term with an order estimate holds
for the Wright function
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Fig. 5. The steepest descent curve e” sin (¢q) + e~ P sin (cq) = q(eP* + ce” “P?) for ¢ > —1 and po > 0.

ePo — g—¢Po

— v|l————————
ePo + ce™Po ePo + ce—cpPo Po

2ny(ePo — c2e—CPo)

1
NG

W (c,v+1;0v) = \/ (1 +0( )) . v o0, (2.3)

2
where for ¢ > 1, pg # h;(fl).

Proof. In this case, the stationary point is ug = pp and consequently the relation (2.2) gives rise to

e’u.() _ e—C’U,O
In order to find the steepest descent curve, it is sufficient to consider the equation S(h(u)) = S(h(ug)) =0
and obtain the following relation for the desired curve [33]

”sin (q) + ¢ sin (cq) = (" +ce™ ™) q, c> 1, po>0. (2.5)

It is obvious that the curve (2.5) is symmetric with respect to the p-axis, when ¢ varies from —7 to 7, the
conjugate contours %1 and %5 are begun from ug = pg and ended with oo + im, respectively. See Fig. 5 for
the nonnegative part of p-axis. At this point, in view of Fig. 3 and (1.7), we can present

. _ 1 vh(u) 1 vh(u)
W(c,v+1; ) = 57 /e du 57 | € du, v — o0, (2.6)
<€1 <g2

with the following values for the function h

u __ ,—cu u —cu u __ n2,—cu
hu)= ——S  _u, RW(u) = e ™ 1, Wu)=-"%° (2.7)
ePo 4 ce—¢cPo ePo 4 ce—cpPo ePo 4 ce—cPo

Here, for ¢ > —1 and py > 0, we take into account the values

W (po) =0, h"(po) #0, a=arg(h”(py)) =0,

In(c?)

and establish the condition py # =5

for ¢ > 1. We also use the asymptotic expansion theorem to get

o (1 +o(- )) : (2.8)

ePo — e~ ¢Po

/euh(u)du — \/ m(eP? + ce”P0) ;LPO + ce—cpo

2u(ePo — c2e—cPo)

B

61
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ePo — g—¢Po

/euh(u)d’u, = \/277(61;0 + ce” ) ;LPO +ce—cpo

v(ePo — c2e=cpo)

o (1 +O( )) , (2.9)

R

Ca
where 61 and 6 are the angels of stationary point ug = pg given by

(0% ™ ™ [0 ™ ™
=[5 —Slazo=—5, O2=[-5+5laz0 =3 (2.10)

[\V]

We finally substitute the above relations into (2.6) and complete the proof. O

In the next theorem, we apply the Lagrange expansion formula to establish an asymptotic expansion for
the Wright function.

Theorem 2.2. For ¢ > —1 and py > 0, the following asymptotic expansion holds for the Wright function

[ ePo _ e~ CPo }
Po —cpo V| o —epo Po| X D
W(c,v+1; ) = e’ tce e LEF e Z UL =, Vv—o00, (2.11)
2my(er — c?em) ero—c2e=cr
m=0 l/( eP0 4ce—cP0 )
where for ¢ > 1, pg # % and D,, € R is given by
— +1 2 o)
(=)™ [P0 —Peepo\ TR | g2m 1—(m+1) _
D = 22m+3 1 \ ePo + ce—CPo m[jzoujw } 2 ;, m=0,1,2,---, (2.12)
- w=0
such that
1 ePo _ 2m+2o—cpo
Ham = (2m + 2)! [ ePo + ce=cPo } ’
1 ePo +c2m+3e—cp0
— , =0,1,2,---. 2.13
Ham+1 (2m + 3)! [ ePo + ce~CPo " (2.13)
Proof. At first, we set the following map
6170 _ e*Cpo eu _ 676u
7 = h(po) — h(u) = [W Po] - [W’ - U} ) (2.14)

and use the relation (2.6) to show

ePo — g—¢Po
)
ePo 4 ce—cpo 1P

"/ﬂ(c,y—i—l;)\u)ze 9
i

du
VT —dr, 2.15
/ € dr T ( )
E11—6o!

where €] and %, are the mapped contours in the 7-plane corresponding to the contours %7 and %5 in the
u-plane, respectively. In this case, for the steepest curves €] and €5 we have $[7] = 0. Therefore, we deduce
that the contours €] and %4 are the real axis in the 7-plane. Here, we apply the Taylor expansion and
present
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1 [epo — cZe—cpo 1 [epo + c3e~cpo
T = EE—

—_—— e J— 2 _
2! | ePo + ce—cPo } (u=po) 31| ePo 4 ce—cPo

1 {epo —cte=cpo

| (wpo®
4
4! ePo - ce—CPo :l (’LL - pO) + e (216)
or equivalently
7= —(u—po)? [po + 1 (u = po) + pa(u —po)* +---], (2.17)

where the coefficient p; € R was shown in (2.13). Also, by setting w = u — py we can obtain the following
relation for employing the Lagrange expansion

[N

w—po = £ir? [po + pw + pow? + -] 2, (2.18)

where the positive sign in the above relation corresponds to € (¢ > 0) and the negative sign corresponds
to € (¢ < 0). In this stage, using Lagrange’s theorem we arrive at

w=0

> (i)rz [ dnt n
u—Po=Z( r)u [dwn_1 [0 + (1 = po) + p2(w —po)* +-- 172 | . (2.19)
n=1 :

We now substitute (2.19) into (2.15) and consider the inverse functions uy and u_ (related to the positive
and negative signs, respectively) and apply the Watson lemma to obtain

—quU’ _ r —m-d(u+ —’U,,)
/e deT—/e = dr

& 0
N | m—1
= z/e i Z — 7" 2dr
|
) = (2m)!
oo (71)m(l2m+1 1 —(m+1)
~ — 2
sz::O @m)! (m+ 2)1/
. - (_l)mr(%)QQm—H —(m+1)
=iy ] v 2), (2.20)
m=0
where a,, is given by
dnfl .
Ap = [W[uo+u1w+ﬂ2w2+...]z] , 71:1’27...7 (2.21)
w w=0
or briefly
1
_ =5 _ ePo + ce™Po \ 2
av=po " =205 =0 ) (2.22)
_ 2 (2P0 1 (3¢ e(1—=c)po 4 cte—2¢po
ag = —pp = —% | — ( . )_ a : (2.23)
3 e2ro — 2¢2e(1=A)po  4e—2cpo

Finally, we obtain
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ePo — g—¢Po

v €0+C€ €Po :|
P °P o0

e
W 1; ) = — 2.24
(c,v+1; ) N 2 Tyl v — 00, (2.24)
which by putting
_ m+3
(=)™ [ePo — Pemero 2
D= ot U e ) @t (2.25)
we present (2.11) and complete the proof. O
Remark 2.3. In the special case ¢ = 1 and in view of (1.4), the relation (2.1) is equivalent to A = m < 1.

For this case, the asymptotic expansion of the Bessel function J, is established as follows [34, p. 389]

1 v( tan - 1 5 coth?

To(——) = ¢ (tanipo) o) (1482 ®o) )y v (2.26)
cosh(po) /27w tanh(po) v tanh(po)

Also, in the special case ¢ = 0, we can find Dy = 1 and D; = f% and get the following asymptotic

expansion for the exponential function
(lx)’/ -z 1 (lm)y _x ].
V4 Liz)=—2*"—e 2 = 2" (1 —— — 00. 2.2
(0,v+ 1;2) F(l/—‘rl)6 2 N e 2 ( 12V+ ), v o0 (2.27)

Remark 2.4. In order to study the numerical verification, we consider the leading term of (2.11) and show
the graphs of the relative errors for different values of ¢ and » = 100 in Fig. 6. It is obvious that these

presentations refer to the suitable approximations with the very small errors. We should also mention that
In(c?)
c+1 °

the relative error increases near the point py =

3. The complex stationary point

In this case, for ¢ > 0 we have the conjugate stationary points py £ igo which has been demonstrated in
Fig. 4. In this sense, we have

2

A= 0 3.1
ePo cos(qo) + ce~cPo cos(cqo)’ %0 70, (3:1)

and mention that the used approach is not valid for the case —1 < ¢ < 0. Therefore, we only restrict
ourselves to the case ¢ > 0 and recall the relations (1.24) and (1.25) for stating the following theorem.

Theorem 3.1. For ¢ > 0 and ug = pg + iqo, the following leading asymptotic term with an order estimate
holds for the Wright function

2€uh(ug)—i 5

27v| R (ug)|

1

7/(0,1/—}—1;)\1/):%{ <1+O(\ﬁ

>)] . o= arg(h"(uo)), (3.2)

where

In(c?) . 2kn

uo 7 1+c¢ ll—i—c

, ¢c+1>2k keN. (3.3)
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¢=0.5, v=100
0.0251

0.020

0.015+

0.0104

0.005

2 3 4 5 6 7
Py
c=1.5,v=100
0.0022
0.0020
0.0018
0.0016
0.0014

0.0012

0.0010

Fig. 6. The graphs of the relative errors for the relation (2.11).

Proof. In order to find the steepest descent curve, it is sufficient to set S(h(u)) = S(h(ug)) and obtain

following equation

P sing + e~ sin (cq) = [€”° cos(qo) + ce P cos(cqo)] (g — qo) + [sin(qo) + sin(cqo)] -

The curve (3.4) for the conjugate stationary points pg £igo has been plotted in Fig. 7. The steepest descent
curve for ug = pg + iqp is symmetric with respect to the p-axis. For this case, the curve 65 is conjugate of
©s, and the curve %5 is conjugate of €. Moreover, the curve %3 is begun from uy = pg +iqe and ended with
oo + 4w, and the curve %, is begun from ug = pg + iqp and ended with —oo. Now, in view of the relation

/ 6l/h(u) du,

euh(u) du,

(1.8) and Fig. 3, we have

1
HY (c,v+1; M) = —
i

1
H® (c,v+1;Mv) = —

with the following values for the function h

0.0018 1

0.0017 1

0.0016

0.0015

0.0014 1

0.0013 1

0.0012

0.0011

0.0010

0.0009

c=1,v=100
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q=3(u)
in 0o + 17
Cs
C, U = (Po; qo)
— OO
p=R(u)
ey s
Lo = (Po; —qo)
—i —00 + 17
Fig. 7. The steepest descent curves for the relation (3.4).
el — g—cu
h(u) = —u, (3.7
€ePo cos(qo) + ce=Po cos(cqop)
e 4 ce™
B (u) = _1, (3.8)
ePo cos(qo) + ce=Po cos(cq)
u _ L2,—cu
R (u) = S (3.9)

ePo cos(qg) + ce~<Po cos(cqo)’

such that h'(ug) = h/(ug) and A'(ug) = h'(po + iqo) = 0. Also, for the second derivative of the function h,

we have

(3.10)

ePo cos(qo) — c2e P cos(cqo) [ ePosin(qo) + e~ PO sin(cqo)
ePo cos(qp) + cecPo cos(cqo) ePo cos(qo) + ce—<Po cos(cqo) )

R (ug) = (

such that h''(ug) = b (up) and h”(ug) = h"(po + iqo) # O (it is clear that the value of h”(ug) vanishes at

2
the point ug = lri(_fc) + zfﬁ’z,

k € N). Now, by considering the argument

(3.11)

Do gj 20—Cpo gj
o = arg(h" (ug)) = arctan (e sin(go) + e sin(cdo) >7

ePo cos(qg) — c2e~cPo cos(eqo)

we can establish the following asymptotic behaviors

) 1
uh(u)d _ T vh(uo)+ib; 1+ 0(— i = 3.4 3.12
/e U 2y‘h”(u0)|e < + (\/;) 9 J y Ty ( )
€
/euh(u)du = [T ewh(uo)tib; (1 4 O(L) j=5,6 (3.13)
2[R (o) Nz Y
C;

where the angles 0, are related to the contours % as

™ — 3T — « oa—T o — 3T
03 = 5 04 = 5 05 = , bg= . (3.14)

We now substitute (3.12), (3.13) into (3.5), (3.6), respectively, and get

euh(uo) (6193 _ ei94>

1
oot <1+0($)>, (3.15)

HY (e,v+1; M) =
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H® (c,v+ 1;00) = M) (e _761-95) (1 + 0(i)> . (3.16)
2rv W (ug)| N
At this point, using the following facts
1" (@)] = | (w)] = [h" (u)], (3.17)
and the relationships between the angles 05 = —03, 0 = —0,, we arrive at
H® (c,v+1;00) = eUh(u.O) 0 ) <1 + O(L)> : (3.18)
2ro I (uo)] v
Thus, we can deduce
H® (c,v+1;0) = HD (¢, v+ 1; M), (3.19)
where
vh(uo) (oi0a—3) _ 4i(0a—3)
HWY (c,v+1;) = ( T ) (1 + O(ﬁ)> (3.20)
vh(uo)—i
- % (1 + O(\%)) . (3.21)
Finally, by taking into account the relation (1.6), we obtain (3.2) from the following relation
W (c,v+ 1; ) = m(HU) (c,v+ 1;)\1/)>, (3.22)

and complete the proof. 0O

Corollary 3.2. By the same procedure to Theorem 3.1, for generalization of the Bessel function of second
kind Y, presented by

Y (c,d;z) = % {H(l)(c, d;z) — H(Q)(c7 d;z)} , (3.23)

we can state the following leading asymptotic term with an order estimate

v L) =g | 2 (1 o(- )) 394
v+ L) =8| —m—mm—= | 1+ O(— . .
( 2mv | (up)| N (3:24)
Theorem 3.3. For ¢ > 0, the following asymptotic expansion holds for the Wright function
2el/h(u0)—‘— e
W (c,v+1; ) =R . a=arg(h” (ug)), 3.25
- n[ H S ] s, o
where
In(c?) 2km
j—— 1>2k, keN 3.26
U0#1+C T+e et l>2k €N (3:26)

and
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1 oo
A el _— _
D = 92m+3 dw?m [Z njw]} (m+3) ym=0,1,2,--, (327)
7=0
w=0
such that
B 1 ePo cos(qo) — 2™ F2e=Po cos(eqp) g ePo sin(qg) + c*™T2e=Po sin(cqp) (3.28)
2m = (2m + 2)! €ePo cos(qg) + ce=Po cos(cqo) ePo cos(go) + ce=°Po cos(cqo) o
B 1 ePo cos(qp) + 2™ T3e=Po cos(eqp) ; ePo sin(qg) — 2™ F3e=Po gin(eqp)
f2m+1 = (2m + 3)! epPo cos(qg) + ce=°Po cos(cqo) ePo cos(qo) + ce~°Po cos(cqo) '
(3.29)
Proof. At first, we consider
ePo cos — e~ P cos(c .| ePosin + e Psin(c
]’L(Uo) — (QO) — ( QO) —pol| +i : (QO) - ( QO) — g0, (330)
ePo cos(q0) + ce—cPo cos(cqp) ePo cos(q0) + ce—cPo cos(cqp)
and set the map 7 = h(ug) — h(w). In this sense, we use the relations (1.25), (3.5) and (3.6) to show
1
HD (e, +1; M) = —erh(w0) / e_wd—udT7 (3.31)
0 dr
€5—C
1 [
H® (e,v+1;\) = —erhw0) / ef’”d—udT7 (3.32)
i dr
(géf(gé

where (fj{, Jj = 3,4,5,6, are the contours in the 7-plane corresponding to %; in the u-plane. In this case,

$(h(u)) is nonzero and equal to the constant value (h(ug)) for j = 3,4, and equal to —(h(up)) for

7 = 5,6. In this regard, by using the Taylor expansion we have

h<>:ffmmmmkwm2f§“$wwwfuw”f1

1 (o) (= o)t =+

UO

1
2!

ePo cos(qg) — c2e™°Po cos(cqp) ePo sin(qg) + c2e~Po sin(cqo)
ePo cos(qg) + cecPo cos(cqp) ePo cos(qp) + ce=Po cos(cqp)

)] = o+ iaw)®

) —
(epo cos(qo) + cPe—cPo cos(cq())> (epo sin(qg) — c3e~P0 sin(cqp)
7

1
3! [ €ePo cos(qg) + ce=Po cos(cqo) €ePo cos(qop) + ce=Po cos(cqop) ﬂ u = (po+ iqo))”
1 ePo cos — cte™Po cos(c ePo sin + cte~Posin(c
o+ QO (cqo) +i (90) (cqo) (u — (po _qu))
4! epPo cos(qo) + ce~°Po cos(cqop) €ePo cos(qp) + ce=Po cos(cqo)
_ (3.33)
or equivalently
7= = (= (po +i0))” [0+ (= (o + i) + 2 (u = (po +a0))” + -+, (3.34)

where 7; € C are obtained via (3.28) and (3.29). Now, in view of the contours 3 and %4 which correspond
to the arguments arg (1) = 05 and arg (n9) = 7+03 = 0y, respectively, we show the following representation

N

u— (po +iqo) = £iT? [1g + mw +mew? + -] 7, (3.35)

and employ the Lagrange expansion formula to find
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e :t‘ n % dn71 n
()" [ 3 (3.36)

U—(p0+ZqO):Z nl dwrn—1 [7]0—|—’r}1’w—|—lu2w2—|—...]72

— w=0

We substitute (3.36) into (3.31) and consider the inverse functions uy and u_ to apply the Watson lemma
as

d o0
/ e_”—udT:/ +—u )dT
dr
€4—C; 0
T b
:z/e vT ) 2"m+1 m——dT
0 m=0 :

1 bm 1 1
vy B e N (S LA

m=0
2 (=)™ (5)bo L
— mtl —(m+3)
=i ZO 22mm' mta), (3.37)
where the coefficient b, is given by
m—1 9 n
b”_{m[ﬂo+n1w+n2w +] 2:|w_07 n=12-.-, (338)
or briefly
A ePo cos(qo) — c2e™Po cos(cqo) . eP° sin(qo) + c2e PO sin(cqp) % (3.39)
1= " = ePo cos(qo) + ce=cPo cos(cqo) ePo cos(qg) + ce=Po cos(cqo) ’ ’
by — =2 2 [ePocos(qo) — c?e™P0 cos(cqp)  .ePosin(qo) + ce~Po sin(cq) ]~
27 7 =T T cos(qo) + ce=Po cos(ceqp) ePo cos(qop) + ce=Po cos(cqo)
ePo cos(qo) + c3e~Po cos(cqo) . €P0 sin(g) — c3e P sin(eqp) (3.40)
ePo cos(qg) + ce~<Po cos(cqo) ePo cos(qo) + ce~<Po cos(cqo) '
Consequently, we obtain
vh(uo) 2 (—1)mT(Llyp
HD (c,v+1; W) = & (=1 (2)1 Al (3.41)
22mym+taml
m=0
or equivalently
HO (6.0 1 1:0w) = 220 S Z (3.42)
c, v+ 1; Av .
\/27w|h/’ uo) | Vh” (uo))
where
—1)ym (R m+lb - )
Dy, = C Q) bams 0 = (g e (3.43)

22m+%

Similarly, in view of the conjugate stationary point ug = py — iqg, we can present
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AR o (3.44)
27T1/|h” uO)‘ m=0 (I/h”(UQ))m

H® (c,v+1;00)=HW (e,v+1; M) =

Finally, we use (1.6) to get

2 V}’L(UQ)——

, 3.45
/271'1/|h” UO Z h// UO ‘| ( )

W (c,v+1; ) = l

and complete the proof. O

Corollary 3.4. By the same procedure to Theorem 3.3, for generalization of the Bessel function of second
kind Y, we can state the following asymptotic expansion

@

26Vh(uo —ix

Y (c,v+ 1) =S [ Z h” (o) 1 , (3.46)

27w |h (uo)|
where D!, and n., are given by (3.27), (3.28) and (3.29).

Remark 3.5. In the special case ¢ = 1 and ug = iqg, we have h(ug) = i (tan(qo) — qo), h"'(up) = itan(qo)
and \ = m > 1. Thus, an alternative asymptotic expansion of the Bessel function J, is also established
as follows [34, p. 392]

2 T
Jy(vsec = ———— 08 (Vtan —vqy — —)
(vsec(qo)) Ty o) (a0) —vao — 7
1, 5 2
s + = cot“(qo) 2 . ( T
8 24
sin ( v tan — v ——>+-~-, v — 00. 3.47
v tan(qo) 27v tan(qo) (@) = v 4 (3.47)

Remark 3.6. In order to discuss the numerical verification of (3.25), we should choose the points (pg, qo)
such that the condition (1.22) along with the relation (3.1) hold (for A > 0) In order to get a suitable

approximation, we can not follow our computations near the points ug = ln(c ) 4 zfi’;, c+1>2k, keN.

Summarizing, the point (pg, go) should satisfy the following system

ePo sin gg — ce~ P gin(cqg) = 0, c>0,

>0, ¢>0, (3.48)

ePo cos(qo) + ce=Po cos(cqp)

2
po# ) A BT c+1>2%, kel

4. Concluding remarks

In this paper, we considered a generalization of the Schlifli integral for the modification of Wright func-
tion. This integral was established by the exponential map on a contour consists of three sides of a rectangle.
This contour played a fundamental role in determining the steepest descent curves for asymptotic expan-
sion of the integral. Our discussion was summarized by two cases for the stationary points and associated
steepest descent curves. In the all cases, we tried to find the steepest descent curves with respect to the
Schlifli integral contour. In this sense, in Section 3 for the complex stationary point, we had to introduce
new functions H), j = 1,2, to present the desired curves tending to the Schlifli integral contour. Finally,
the associated asymptotic expansions were given using the steepest descent and the Lagrange theorem.
Here, we should mention a critical point for the all obtained results. In the all computations, we considered
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a simple stationary point ug (h”(ug) # 0) for presenting the asymptotic expansions. In the non-simple
stationary point (h”(ug) = 0) or near this point, we state the following remarks. In view of the necessary
condition (1.22) for the steepest descent curve

ePo sin(gg) — ce~“P° sin(cqp) = 0, (4.1)

and taking into account the condition

elo — 62€—cu0

h// — — Q7 — ) , 4.2
(uo) ePo cos(qo) + ce~Po cos(eqo) to = Po + 100 (42)

we should solve these algebraic equations, simultaneously, and get the non-simple stationary points as

In(c?) Z_2k7r
1+4+c¢ 1+¢’

ug =

c+1>2k k=01,2--. (4.3)

When the stationary point is the exact point ug, we should follow the discussion of Section 1 and apply
Theorem 1.1 for n = 3 to represent the associated asymptotic expansions. See [33, §23.5] for the case ¢ = 1
and representing the Airy-type expansion for the Bessel function J,(z). When the stationary point is near

2
111(_?0) + i%, the parameter A tends to

point ug =

2

A= — c+1>2k k=0,1,2,--- (4.4)
cTHe cos(%)—&—c_% COS(%)’ 7
and in the vicinity of ug, for ¢ > 1 we have
1 ; us
v=z{y-¢), c>1, >0, veC, z=uze¥, |p =arg(z)|< 3 (4.5)
In this respect, we can consider the following integral
1 zel? {512;%‘ sinh(lgﬂu)—%] +zeu
W(c,v+1;2)= — du,
271
k7
co—+1im ) 1—c
ze'? [ST“ sinh( 12—6 “)*%] +zeu
= — e u,
27
oo —1im
c>1, >0, velC, zeR, |g0|<g, (4.6)
and take into account the functions h(u) = e*? [e%“sinh(%u) —%| and g(u) = €**". Based on the

steepest descent method, if we now follow the proposed approach in [34, §7.12], then we can approximate
the integral (4.6) with an upper bound near ug presented in Figs. 5 and 7. The point ug = po + iqo in these
figures are mixed in Fig. 8 for the case ¢ = 1 and ug = 0 [34, p. 395]. We omit the associated details in this
case.
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Fig. 8. The steepest decent curve cosh(p) sin(q) = ¢ for ¢ = 1.
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