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1 Introduction

Let cs(G) denote the set of conjugacy class sizes of a finite group G.

In 1988, John G. Thompson posed the following conjecture which appears as Problem

12.38 of [10].

Conjecture. If S is a finite simple group and G is a finite group such that Z(G) = 1 and

cs(G) = cs(S), then G is isomorphic to S.

In [1, 2, 3, 4, 5, 6, 8, 9, 15], it has been shown that the conjecture is true for many finite

simple groups. We prove the following.

Main Theorem. If G is a finite group such that Z(G) = 1 and cs(G) = cs(PSUn(q)), then

G ∼= PSUn(q).

∗Email:ahanjideh.neda@sci.sku.ac.ir
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2 Definitions and preliminary results

Let H be a finite group. For x ∈ H, clH(x) and CH(x) denote the conjugacy class in H

containing x and the centralizer of x in H, respectively. Also, let π(H) and ω(H) be the set

of prime divisors of |H| and the set of orders of elements of H, respectively. For r ∈ π(H)

(resp. π ⊆ π(H)), Or(H) (resp. Oπ(H)) is the largest normal r-subgroup (resp. π-subgroup)

of H and Or′(H) is the largest normal r′-subgroup of H. Also, Sylr(H) denotes the set of

r-Sylow subgroups of H.

For a prime r and a natural number a, |a|r is the r-part of a, i.e., |a|r = rt, if rt‖a,

|a|r′ = a/|a|r is the r′-part of a. If π is a set of primes, then put |a|π =
∏
r∈π |a|r and

|a|π′ = a/|a|π. Define sgn(−1) = − and sgn(+1) = +. Sometimes, we use GL+
n (q) and

GL−n (q) for GLn(q) and GUn(q), respectively.

Throughout this paper, let p be a prime, q = pk, n ≥ 3 be a natural number such that

(n, q) 6= (3, 2) and let G be a finite group such that Z(G) = 1 and cs(G) = cs(PSUn(q)). All

other notations are borrowed from [7] and [12].

Definition 2.1 For an integer m with |m| > 1 and an odd prime r such that gcd(m, r) = 1,

expr(m) denotes the multiplicative order of m modulo r, that is the smallest natural number

i with mi ≡ 1 (mod r). For an odd integer m, we put exp2(m) = 1 if m ≡ 1 (mod 4) and

exp2(m) = 2, otherwise. A prime r with expr(m) = i is a primitive prime divisor of mi − 1.

Let Zi(m) be the set of all primitive prime divisors of mi − 1.

Lemma 2.2 (Zsigmondy Theorem) [21, 16] Let m be an integer with |m| > 1. For every

positive integer i, there is a primitive prime divisor of mi − 1, except for the pairs (m, i) ∈

{(2, 1), (2, 6), (−2, 2), (−2, 3), (3, 1), (−3, 2)}.

Lemma 2.3 Let r, s, t and u be distinct prime divisors of the order of the finite group H,

K = O{r,s}(H) and Ks ∈ Syls(K).

(i) If x is a non-trivial s-element of K such that x ∈ Ks, then |clH(x)|r′ < |K|s.

(ii) If M̄ = M/K is a normal t-subgroup of H̄ = H/K, then there exist Mt ∈ Sylt(M) and

a non-trivial u-element y ∈ H such that Mt ≤ NH(Ks) and y ∈ NH(KsMt).
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Proof. Let Kr ∈ Sylr(K). Then K = KrKs and so, by Frattini’s argument, H = KNH(Ks) =

KrNH(Ks) and hence [H : NH(Ks)] is an r-number. Since x ∈ Ks ENH(Ks), clNH(Ks)(x) ⊂

Ks. Thus
|cl
H

(x)|
|cl
H

(x)|r ≤
|clH(x)|[CH(x):CNH (Ks)(x)]

[H:NH(Ks)]
= |clNH(Ks)(x)| < |Ks|. Therefore, |clH(x)|r′ <

|K|s, as required in (i). Now we prove (ii). Since H = KrNH(Ks) and u ∈ π(H) − {r},

u | |NH(Ks)|. Also, Kr ≤ M and hence, the Dedekind modular law shows that M =

M ∩H = M ∩ (KrNH(Ks)) = Kr(M ∩NH(Ks)). Therefore, there exists Mt ∈ Sylt(M) such

that Mt ≤ NH(Ks) and hence, KsMt ≤ H. On the other hand, M = MtK EH and hence,

the Dedekind modular law shows that

MtNK(Ks) = Mt(K ∩NH(Ks)) = (MtK) ∩NH(Ks) = M ∩NH(Ks)ENH(Ks).

Thus Frattini’s argument gives that

NH(Ks) = NNH(Ks)(Mt)MtNK(Ks) = NNH(Ks)(Mt)NK(Ks).

Since K is a {r, s}-group and u | |NH(Ks)|, we deduce that u | |NNH(Ks)(Mt)| and hence,

NNH(Ks)(Mt) = NH(Ks) ∩ NH(Mt) contains a non-trivial u-element y. Consequently, y ∈

NH(KsMt), as claimed in (ii). �

In the following lemma, we collect some known facts used frequently.

Lemma 2.4 Let H be a finite group, N a normal subgroup of H and x, y ∈ H.

(i) If xy = yx and gcd(O(x), O(y)) = 1, then CH(xy) = CH(x) ∩ CH(y). In particular,

CH(xy) ≤ CH(x) and |clH(x)| divides |clH(xy)|;

(ii) if |CH(x) ∩N | = 1, then |N | divides |clH(x)|;

(iii) if x ∈ N , then |clN (x)| divides |clH(x)|;

(iv) if gcd(|N |, O(x)) = 1, then CH/N (xN) = CH(x)N/N ;

(v) if r||H/N |, r - |N | (r is a prime and r 6= p), pe‖|N | and pt‖|CN (R)|, where R ∈ Sylr(H),

then r|pe−t − 1;

(vi) if N is the π-group, for some π ⊆ π(H), and x is the π′-element of H of a prime power

order, then |clH(x)|π′ divides |clH/N (xN)|.
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Proof. (i)-(iii) are straightforward and we obtain (iv) from [11, Theorem 1.6.2]. For the proof

of (v), let P ∈ Sylp(N). Since by Frattini’s argument, H = NH(P )N , we can assume that

R ∈ NH(P ). Let Q ∈ Sylp(CN (R)) such that Q ≤ P . Therefore, |P | ≡ |Q| (mod r), so

r | pe−t − 1, as required in (v). For the proof of (vi), applying (iv) shows that CH/N (xN) =

CH(x)N/N and hence |clH/N (xN)| = [H/N : CH(x)N/N ] = |H||CN (x)|
|CH(x)||N | = |clH(x)|

[N :CN (x)] is divisible

by |clH(x)|π′ , as desired. �

Lemma 2.5 [2, Lemma 2.7(i)] Let r ∈ Zn(q) and let x be a non-central element of GLn(q)

such that r | |CGLn(q)(x)|. If m is the smallest natural number with O(x) | qm − 1, then

CGLn(q)(x) ∼= GLn/m(qm).

In the following lemmas, GF (q) is the field with q elements, diag(a1, ..., am) is a diago-

nal matrix with numbers a1, a2, . . . , am on a diagonal, bd(A1, A2, . . . , Am) denotes a block-

diagonal matrix with square blocks A1, A2, . . . , Am and Ct denotes the transpose of a square

matrix C.

Lemma 2.6 Let t be a natural number such that 2t | n and let B ∈ GLt(q2) such that O(B) |

q2t − 1 and for every 1 ≤ l < 2t, O(B) - ql − (−1)l. If C = bd(B, . . . , B) ∈ GLn/2(q2) and τ

is a field automorphism of GLn/2(q2), then Cτ and (Ct)−1 are not conjugate in GLn/2(q2).

Proof. Let GF (q2) be the algebraic closure of the field of order q2 and let ξ be an element of

GF (q2t) of orderO(B). There is g ∈ GLt(GF (q2)) such thatB = g−1diag(ξ, ξq
2
, . . . , ξq

2(t−1)
)g ∈

GLt(q
2) (see [17, Lemma 5]). Thus there exists g1 ∈ GLn/2(GF (q2)) such that

C = g−1
1 diag(ξ, ξq

2
, . . . , ξq

2(t−1)
, . . . , ξ, ξq

2
, . . . , ξq

2(t−1)
)g1.

If Cτ and (Ct)−1 are conjugate in GLn/2(q2), then we can assume that there exists h = (hij) ∈

GLn/2(GF (q2)) such that

h−1 diag (ξq, ξq
3
, . . . , ξq

2(t−1)+1
, . . . , ξq, ξq

3
, . . . , ξq

2(t−1)+1)h = (1)

diag (ξ−1, ξ−q
2
, . . . , ξ−q

2(t−1)
, . . . , ξ−1, ξ−q

2
, . . . , ξ−q

2(t−1)
).

Since det(h) 6= 0, there exists 1 ≤ j ≤ n such that h1j 6= 0. On the other hand, (1) forces

ξqh1j = h1jξ
−q2l

, where 0 ≤ l ≤ t − 1 and l ≡ j − 1 (mod t). Therefore, ξq = ξ−q
2l

and

hence (ξq)q
2l−1+1 = 1. Thus O(ξq) = O(ξ) = O(B) | q2l−1 + 1 = q2l−1 − (−1)2l−1. But
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2l − 1 ≤ 2(t− 1)− 1 < 2t, which is a contradiction by our assumption on O(B). This shows

that Cτ and (Ct)−1 are not conjugate in GLn/2(q2). �

Lemma 2.7 Let r ∈ Zn(−q). If x is an element of GUn(q) of order r, then CGUn(q)(x) is a

cyclic group of order qn − (−1)n.

Proof. We prove this lemma in two cases.

Case I. Let n = 2t. It is easy to check that r ∈ Zt(q2). Let C be an element of GLt(q
2)

of order r. Since |GLt(q2)|r = |GUn(q)|r and GUn(q) = {T ∈ GLn(q2) : T τ1JnT
t = Jn},

where τ1 is a field automorphism of GLn(q2) of order 2, It is an identity matrix in GLt(q
2)

and Jn =

 0 It

It 0

 , the second Sylow theorem allows us to assume that x = bd(Cτ , (Ct)−1),

where τ is a field automorphism of GLt(q
2) of order 2. By Lemma 2.6, Cτ and (Ct)−1 are not

conjugate in GLt(q
2) and hence, CGLn(q2)(x) = {bd(h1, h2) : (h1)τ , (ht2)−1 ∈ CGLt(q2)(C)}.

Thus CGUn(q)(x) = {bd(hτ1 , (h
t
1)−1) : h1 ∈ CGLt(q2)(C)} ∼= CGLt(q2)(C). So Lemma 2.5 shows

that CGUn(q)(x) ∼= GL1(qn), which is a cyclic group of order qn − 1 = qn − (−1)n.

Case II. Let n be odd. Then r ∈ Zn(q2). Since GUn(q) = {T ∈ GLn(q2) : T τ1T t = In},

where τ1 is a field automorphism of GLn(q2) of order 2, x ∈ GLn(q2). Lemma 2.5 shows that

CGLn(q2)(x) ∼= GL1(q2n). Note that GL1(q2n) = GF (q2n)−{0}. Thus τ1 can be considered as

an involutory field automorphism of GF (q2n). Therefore, CGUn(q)(x) ∼= {h ∈ GF (q2n)− {0} :

hτ2ht = 1} = GU1(qn), where τ2 is an involutory field automorphism of GL1(q2n) induced by

τ1.

Therefore, CGUn(q)(x) is a cyclic group of order qn − (−1)n, as desired. �

Lemma 2.8 Let r ∈ Zn(−q). If x is a non-central element of GUn(q), then either r -

|CGUn(q)(x)| or there exists a divisor m of n such that CGUn(q)(x) ∼= GLεn/m(qm), where m 6= 1

and ε = sgn((−1)m). In the latter case, if (n, q) = (4, 2), then m = 4.

Proof. Let r | |CGUn(q)(x)|. Then CGUn(q)(x) contains an element y of the order r. Therefore,

x ∈ CGUn(q)(y). By Lemma 2.7, CGUn(q)(y) is a cyclic group of the order qn − (−1)n. Let

CGUn(q)(y) be generated by α. Since x ∈ CGUn(q)(y), we deduce that O(x) divides qn− (−1)n.

Let m be the smallest natural number such that O(x) divides qm − (−1)m. Then m divides

n, by [19, Lemma 6(iii)].
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Case I. Let m = 2t be even. It is known that GLt(q
2) contains an element, say B, of or-

der O(x). Set C := bd(B, . . . , B) ∈ GLn/2(q2) and A := bd(Cτ , (Ct)−1), where τ is a field

automorphism of GLn/2(q2) of the order 2. Lemma 2.6 shows that Cτ and (Ct)−1 are not con-

jugate in GLn/2(q2) and hence, CGLn(q2)(A) = {bd(h1, h2) : (h1)τ , (ht2)−1 ∈ CGLn/2(q2)(C)}.

On the other hand, we can assume that GUn(q) = {T ∈ GLn(q2) : T τ1JnT
t = Jn}, where

τ1 is a field automorphism of GLn(q2) of order 2, In/2 is an identity matrix in GLn/2(q2)

and Jn =

 0 In/2

In/2 0

. Therefore, A ∈ GUn(q) and CGUn(q)(A) = {bd(hτ1 , (h
t
1)−1) : h1 ∈

CGLn/2(q2)(C)} ∼= CGLn/2(q2)(C). Since r ∈ Zn/2(q2), Lemma 2.5 shows that CGUn(q)(A) ∼=

GLn/2t(q
2t) = GLn/m(qm).

Case II. Let m be odd. It is known that GUm(q) contains an element, namely B, of the

order O(x). By our assumption on O(x), we see that B is an irreducible element of GLm(q2)

and since GUm(q) = {T ∈ GLm(q2) : T τT t = Im}, where τ is a field automorphism of

GLm(q2) of the order 2, we have BτBt = Im. Set A = bd (B, . . . , B)︸ ︷︷ ︸
n/m−times

∈ GLn(q2). For the

field automorphism τ1 of GLn(q2) of the order 2, Aτ1At = In and hence, A ∈ GUn(q). Since

B is an irreducible element of GLm(q2), Schur’s lemma guarantees that CGLn(q2)(A) = {h =

(hij) : hij ∈ CGLm(q2)(B) ∪ {0}, for every 1 ≤ i, j ≤ n/m}. Again by the irreducibility of

B, we get that CGLm(q2)(B) ∪ {0} is isomorphic to GF (q2m). Thus τ can be considered as

an involutory field automorphism of GF (q2m). Therefore, CGUn(q)(A) = {h = (hij) : hij ∈

CGLm(q2)(B) ∪ {0}, for every 1 ≤ i, j ≤ n/m and hτ2ht = In/m} ∼= GUn/m(qm), where τ2 is

an involutory field automorphism of GLn/m(q2m) induced by τ .

On the other hand, GLεn/m(qm) contains an element of the order qn− (−1)n and hence we

may assume that y ∈ CGUn(q)(A). Thus both A, x ∈ CGUn(q)(y) = 〈α〉. Since O(A) = O(x)

and 〈α〉 contains exactly one subgroup of a given order, we have 〈A〉 = 〈x〉 and hence,

CGUn(q)(x) = CGUn(q)(A) ∼= GLεn/m(qm), as desired.

If (n, q) = (4, 2), then r = 5. If r | |CGUn(q)(x)|, then CGUn(q)(x) contains a non-trivial

r-element y. So |CGUn(q)(y)| = 15 and |Z(GUn(q))| = 3. Thus x is a product of a central

element and a non-trivial r-element. This shows that |CGUn(q)(x)| = |CGUn(q)(y)| = 15, as

claimed. �

Corollary 2.9 Let r ∈ Zn(−q). If x is a non-central element of SUn(q), then either r -

|CSUn(q)(x)| or there exists a divisor m 6= 1 of n such that |CSUn(q)(x)| = |GLεn/m(qm)|/(q+1),
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where ε = sgn((−1)m). In the latter case, if (n, q) = (4, 2), then m = 4.

Proof. It follows immediately from Lemma 2.8 and the fact that if α is an element of the

order qn − (−1)n of GUn(q), then [〈α〉 : 〈α〉 ∩ SUn(q)] = [GUn(q) : SUn(q)] = q + 1. �

Corollary 2.10 Let r ∈ Zn(−q). If x is a non-trivial element of G, then either |clG(x)|r =

|PSUn(q)|r or there exists a divisor m 6= 1 of n such that |clG(x)| = |GUn(q)|
β|GLε

n/m
(qm)| , where

ε = sgn((−1)m) and either β = 1 or gcd(O(x), gcd(m, q + 1)) 6= 1 and β | gcd(q + 1,m). In

the latter case, if (n, q) = (4, 2), then m 6= 2.

Proof. It follows immediately from Corollary 2.9. �

Lemma 2.11 Let n > 2. If r ∈ Zn−1(−q), then for every non-trivial x ∈ G, either

|clG(x)|r = |PSUn(q)|r or there exists a divisor m of n−1 such that |clG(x)| = |GUn(q)|
(q+1)|GLε

(n−1)/m
(qm)| ,

where ε = sgn((−1)m). Also, if q + 1 | n, then m 6= 1.

Proof. The same argument used in the proof of Lemma 2.8 completes the proof. �

Lemma 2.12 [6, Lemma 2.9] Let H be a finite centerless group with r ∈ π(H) and let

α ∈ cs(H) be maximal in cs(H) by divisibility.

(i) If for every β ∈ cs(H), |H|r > |β|r, then there exists a non-trivial r-element u ∈ H

such that |clH(u)| divides α.

(ii) If Max{|β|r : β ∈ cs(H)} = rt and for every β ∈ cs(H) − {1} with |β|r < rt, we have

|β|r′ - α, then |H|r = rt.

Lemma 2.13 (i) |GUn(q)|
(qn−(−1)n) ,

|GUn(q)|
(q+1)(qn−1−(−1)n−1)

∈ cs(G). Moreover,

|GUn(q)|
(qn − (−1)n)

,
|GUn(q)|

(q + 1)(qn−1 − (−1)n−1)

are maximal in cs(G) by divisibility;

(ii) if t ∈ π(G) such that |G|t > |PSUn(q)|t, then there exist t-elements xn, xn−1 ∈ G such

that |clG(xn)| divides |GUn(q)|
(qn−(−1)n) and |clG(xn−1)| divides |GUn(q)|

(q+1)(qn−1−(−1)n−1)
;

(iii) |PSUn(q)| divides |G| and π(PSUn(q)) = π(G).
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Proof. From Corollary 2.10 and Lemma 2.11, |GUn(q)|
(qn−(−1)n) ,

|GUn(q)|
(q+1)(qn−1−(−1)n−1)

∈ cs(G). Now

suppose by contradiction that |GUn(q)|
(qn−(−1)n) is not maximal in cs(G) by divisibility. Since cs(G) =

cs(PSUn(q)), we conclude that there exists x ∈ PSUn(q) such that |clPSUn(q)(x)| 6= |GUn(q)|
(qn−(−1)n)

and |GUn(q)|
(qn−(−1)n) divides |clPSUn(q)(x)|. Thus |CPSUn(q)(x)| divides (qn−(−1)n)

gcd(n,q+1)(q+1) , so x is a

semi-simple element of PSUn(q). Thus there exists a maximal torus T of PSUn(q) con-

taining x and hence, T ≤ CPSUn(q)(x). Therefore, |T | divides (qn−(−1)n)
gcd(n,q+1)(q+1) and hence,

considering the orders of maximal tori of PSUn(q) (see [18]) shows that |T | = (qn−(−1)n)
gcd(n,q+1)(q+1) .

Therefore, |CPSUn(q)(x)| = (qn−(−1)n)
gcd(n,q+1)(q+1) , which is a contradiction to our assumption. The

same reasoning can be applied to prove that |GUn(q)|
(q+1)(qn−1−(−1)n−1)

is maximal in cs(G) by

divisibility, as wanted in (i). Now (ii) follows from (i) and Lemma 2.12(i). Finally, by

(i), lcm( |GUn(q)|
(qn−(−1)n) ,

|GUn(q)|
(q+1)(qn−1−(−1)n−1)

) = |PSUn(q)| divides |G| and applying the same ar-

gument given in the proof of [3, Corollary 2.8] shows that π(G) ⊆ π(PSUn(q)), hence

π(PSUn(q)) = π(G), as wanted in (iii). �

Lemma 2.14 For α ∈ {n, n− 1}, let rα ∈ Zα(−q).

(i) |G|rα = |PSUn(q)|rα.

(ii) If γ ∈ cs(G) − {1} such that |γ|rα < |G|rα, then there exists a divisor m of α such

that γ = |GUn(q)|
β(q+1)n−α|GLε

α/m
(qm)| , where ε = sgn((−1)m) and either β = 1 or α = n and

β | gcd(q + 1,m). Also, if either α = n or α = n− 1 and q + 1 | n, then m 6= 1.

Proof. Corollary 2.10, Lemmas 2.11 and 2.13, and a trivial verification guarantee that rα and

|GUn(q)|
(q+1)n−α(qα−(−1)α)

satisfy the assumptions of Lemma 2.12(ii) and so complete the proof of (i).

Now (ii) follows from (i), Corollary 2.10 and Lemma 2.11. �

Lemma 2.15 [6, Lemma 2.12] Let H be a finite group with Z(H) = {1} and r ∈ π(H) such

that |H|r = Max{|γ|r : γ ∈ cs(H)}. Let x be a non-trivial r-element of H, let B = {γ ∈

cs(H)−{1} : |γ|r < |H|r} and let ξ be maximal in cs(H) by divisibility. Assume |ξ|r = 1 and

for every β ∈ B − {ξ}, either there exists t ∈ π(H) − {r} such that |ξ|t 6= 1 and one of the

following holds:

(a) |β|t = 1, |H|t = Max{|γ|t : γ ∈ cs(H)} and there is not any δ ∈ B−{β} with |δ|t < |H|t

and β | δ;

8



(b) |β|t = Min{|γ|t : γ ∈ B} 6= |H|t, 1,

or B′ = {γ ∈ B : β | γ} contains exactly two elements and for every γ ∈ B′, we have

|β|r = |γ|r and either |γ| = |β| or |γ|r′/|β|r′ is not a prime power. Then

(i) |clH(x)| = ξ. Moreover, CH(x) = Or(CH(x))× Or′(CH(x)), Or′(CH(x)) is abelian and

CH(x) is nilpotent.

(ii) For every r′-element w ∈ CH(x), CH(x) ≤ CH(w).

Lemma 2.16 For α ∈ {n, n− 1}, let rα ∈ Zα(−q). Then

(i) for every rn−1-element xn−1 ∈ G − {1}, |clG(xn−1)| = |GUn(q)|
(q+1)(qn−1−(−1)n−1)

. More-

over, CG(xn−1) = Orn−1(CG(xn−1)) × Or′n−1
(CG(xn−1)), Or′n−1

(CG(xn−1)) is abelian

and CG(xn−1) is nilpotent.

(ii) If n is prime or (n, q) = (4, 2), then for every rn-element xn ∈ G − {1}, |clG(xn)| =

|GUn(q)|
(qn−(−1)n) . Moreover, CG(xn) = Orn(CG(xn)) × Or′n(CG(xn)), Or′n(CG(xn)) is abelian

and CG(xn) is nilpotent.

(iii) For every r′n−1-element wn−1 ∈ CG(xn−1), CG(xn−1) ≤ CG(wn−1).

(iv) If n is prime or (n, q) = (4, 2), then for every r′n-element wn ∈ CG(xn), CG(xn) ≤

CG(wn).

Proof. Fix Tα = {β ∈ cs(G) − {1} : |β|rα < |G|rα}. Lemmas 2.13 and 2.14(ii), and a trivial

verification lead us to see that rα, |GUn(q)|
(q+1)n−α(qα−(−1)α)

and Tα satisfy the assumptions of Lemma

2.15 and so complete the proof. �

Lemma 2.17 Let u ∈ π(PSUn(q))− {p}.

(i) If {q, u} 6= {2, 3}, then |PSUn(q)|u < q3n/2. Also, if

(q, u) 6∈ {(2, 3), (3, 2), (7, 2), (8, 3), (4, 5)},

then |PSUn(q)|u < 1
2q
n−1q(n−1)/4.
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(ii) If {q, u} 6= {2, 3}, then for (q, u) 6= (7, 2), (8, 3), |PSU4(q)|u < q3.5 and, |PSU4(7)|2 <

73.57, |PSU4(8)|3 < 83.7, |PSU4(2)|3 < 26.5 and |PSU4(3)|2 < 34.5. If {q, u} 6= {2, 3},

then |PSU5(q)|u < q5.5 and, |PSU5(2)|3 < 28 and |PSU5(3)|2 < 37. If {q, u} 6=

{2, 3}, then |PSU6(q)|u < q7 and, |PSU6(2)|3 < 210 and |PSU6(3)|2 < 39. Moreover,

|PSUn(3)|2 < 31.9n−2.4 and |PSUn(2)|3 < 22.4n−0.8.

(iii) If n ≥ 3, then for every x ∈ PSUn(q) − {1}, either |clPSUn(q)(x)| > |PSUn(q)|u or

{q, u} = {2, 3}. Also, if n ≥ 6 and (q, u) 6∈ {(2, 3), (3, 2), (7, 2), (8, 3), (4, 5)}, then for

every x ∈ PSUn(q) − {1}, either |clPSUn(q)(x)|p′ > |PSUn(q)|u or q 6∈ {2, 3, 4, 7, 8},

q + 1 - n and |clPSUn(q)(x)| = |SUn(q)|
|GUn−1(q)| .

Proof. Considering the order of PSUn(q) completes the proof of (i) and (ii). Since CPSUn(q)(x) <

PSUn(q), we deduce that there exists a maximal subgroupM of PSUn(q) containing CPSUn(q)(x).

Considering the orders of maximal subgroups of PSUn(q), mentioned in [12, Tables 3.5.A-F]

and the structural properties of members of these tables [12, Chap. 4] completes the proof of

(iii). �

Remark 2.18 Let rn ∈ Zn(−q). If n is an odd prime or (n, q) = (4, 2), then gcd( qn−(−1)n

(q+1)gcd(n,q+1) , q+

1) = 1 and hence Lemma 2.14(ii) shows that

{β ∈ cs(G)− {1} : |β|rn < |PSUn(q)|rn} =
{ |GUn(q)|

(qn − (−1)n)

}
. (2)

If there exists t ∈ π(G) = π(PSUn(q)) such that |G|t > |PSUn(q)|t, then Lemma 2.14(i)

shows that t 6∈ Zn(−q)∪Zn−1(−q) and Lemma 2.13(ii) forces G− {1} to contain a t-element

x such that |clG(x)| divides |GUn(q)|
qn−(−1)n and hence, rn - |clG(x)|. Thus (2) shows that |clG(x)| =

|GUn(q)|
(qn−(−1)n) . Therefore, CG(x) contains a non-trivial rn-element w, which by (2), |clG(x)| =

|clG(w)|. So Lemma 2.16(iv) guarantees that Z(T ) ≤ CG(w) = CG(x), for some T ∈ Sylt(G).

Thus again Lemma 2.16(iv) shows that if y ∈ Z(T ), then CG(w) ≤ CG(y) and hence |clG(y)|

divides |clG(w)|. Therefore, rn - |clG(y)|. Thus (2) shows that |clG(y)| = |GUn(q)|
(qn−(−1)n) . But

y ∈ Z(T ), so t - |clG(y)| and hence, t ∈ π( (qn−(−1)n)
(q+1)gcd(n,q+1)), by Lemma 2.13(iii). On the

other hand, n is prime or (n, q) = (4, 2) and hence π( (qn−(−1)n)
(q+1)gcd(n,q+1)) = Zn(−q), which is a

contradiction because t 6∈ Zn(−q). Thus |G| = |PSUn(q)|.

Also, let rn−1 ∈ Zn−1(−q). If n − 1 is prime and q + 1 | n, then Lemma 2.14(ii) shows
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that

{β ∈ cs(G)− {1} : |β|rn−1 < |PSUn(q)|rn−1} =
{ |GUn(q)|

(q + 1)(qn−1 − (−1)n−1)

}
.

Thus the same reasoning as above shows that |G| = |PSUn(q)|.

Lemma 2.19 [6, Lemma 2.15] Let H be a finite group with Z(H) = 1 and r, t ∈ π(H).

(i) If for every β ∈ cs(H)−{1} with |β|r < |H|r, t | β, then for every non-trivial r-element

xr ∈ H and T ∈ Sylt(H), CH(xr) ∩ Z(T ) = 1.

(ii) If for every β ∈ cs(H)− {1}, either |β|r = |H|r or |β|t = |H|t, then

(a) rt 6∈ ω(H);

(b) for every r-element xr ∈ H−{1} and t-element xt ∈ H−{1}, CH(xr)∩CH(xt) = 1.

In particular, for every u ∈ π(H), |CH(xr)|u ≤ |clH(xt)|u and |H|u ≤ |clH(xr)|u|clH(xt)|u.

Lemma 2.20 For some π ⊆ π(G), let K be a normal π-subgroup of G and Ḡ = G
K . For

α ∈ {n, n − 1}, let (n, q) = (4, 2) and r3 = r4 = 5 or (n, q) = (3, 3) and r2 = r3 = 7 or

(n, q) 6= (4, 2), (3, 3) and rα ∈ Zα(−q). Let xα be an rα-element of G− {1}. Then:

(i) for every P ∈ Sylp(G), CG(xα) ∩ Z(P ) = 1. Also, if {q, t} = {2, 3} and T ∈ Sylt(G),

then CG(xn) ∩ Z(T ) = {1};

(ii) if (n, q) 6= (3, 3), (4, 2), then for every γ ∈ cs(G)− {1}, either |γ|rn = |G|rn or |γ|rn−1 =

|G|rn−1;

(iii) if (n, q) 6= (3, 3), (4, 2), then rnrn−1 6∈ ω(G);

(iv) if (n, q) 6= (3, 3), (4, 2), then CG(xn) ∩ CG(xn−1) = {1};

(v) for every t ∈ π(G), either (n, q) ∈ {(3, 3), (4, 2)} and |G|t = |PSUn(q)|t or

|G|t ≤
(|GUn(q)|t)2

|q + 1|t|qn − (−1)n|t|qn−1 − (−1)n−1|t
.

In particular, |G|t ≤ (|PSUn(q)|t)2 and |CG(xα)|t ≤ |PSUn(q)|t;

(vi) if rn, rn−1 6∈ π, then | (q+1)n−α(qα−(−1)α)|
(q+1)gcd(n,q+1) |π′ | |CḠ(x̄α)|;

(vii) if rn, rn−1 6∈ π, then CḠ(x̄n−1) is nilpotent and Or′n−1
(CḠ(x̄n−1)) is abelian. Also, if n

is prime or (n, q) = (4, 2), then CḠ(x̄n) is nilpotent and Or′n(CḠ(x̄n)) is abelian.
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Proof. (i) follows immediately from Lemmas 2.14(ii) and 2.19(i). For the proof of (ii), we

assume that such γ ∈ cs(G) exists. We derive a contradiction to this assumption. Since

|γ|rn 6= |G|rn , we deduce from Lemma 2.14(ii) that γ = |GUn(q)|
β|GLε

n/m
(qm)| , where m 6= 1 is a

divisor of n, ε = sgn((−1)m) and β | gcd(q + 1,m). Thus considering Lemma 2.14(i) gives

that |γ|rn−1 = |PSUn(q)|rn−1 = |G|rn−1 , which is a contradiction. From (ii) and Lemma

2.19(ii)(a,b), we obtain (iii) and (iv). Also, if (n, q) = (3, 3), (4, 2), then Remark 2.18 shows

that |G| = |PSUn(q)| and otherwise, by Lemma 2.19(ii)(b), for every t ∈ π(G), |G|t ≤

|clG(xn)|t|clG(xn−1)|t. Thus (v) follows from Lemma 2.14(ii). Now we prove (vi). From

Lemmas 2.14(ii) and 2.16(i), |PSUn(q)| divides |G| and |clG(xα)| | |PSUn(q)|(q+1)gcd(n,q+1)
(q+1)n−α(qα−(−1)α)

.

Thus |G|(q+1)n−α(qα−(−1)α)
|PSUn(q)|(q+1)gcd(n,q+1) | |CG(xα)|. Also Lemma 2.4(iv) shows that CḠ(x̄α) = CG(xα)K

K
∼=

CG(xα)
CK(xα) , so (vi) follows and Lemma 2.16(i,ii) completes the proof of (vii). �

Lemma 2.21 Let rn ∈ Zn(−q) and xn be an rn-element of G − {1}. Also let K E G be a

s-group for some s ∈ π(G).

(i) If S ∈ Syls(G) such that K ∩CS(xn) 6= {1}, then there exists 1 6= yn ∈ K ∩CS(xn) such

that Z(K)CS(xn) ≤ CG(yn).

(ii) If S ∈ Syls(G) such that Z(K)∩CS(xn) 6= {1}, then there exists 1 6= yn ∈ Z(K)∩CS(xn)

such that KCS(xn) ≤ CG(yn).

Proof. Since KEG, {1} 6= K∩CS(xn)ECS(xn) and hence, Z(CS(xn))∩(K∩CS(xn)) 6= {1}.

Thus there exists 1 6= yn ∈ Z(CS(xn)) ∩K, so CS(xn) ≤ CG(yn). Also, yn ∈ K and hence,

Z(K) ≤ CG(yn). Therefore, Z(K)CS(xn) ≤ CG(yn), as desired in (i). The same argument

completes the proof of (ii). �

Lemma 2.22 Let (n, q) 6= (3, 3), (4, 2), α ∈ {n, n − 1}, rα ∈ Zα(−q) and let xα be an

rα-element of G − {1}. Also let K E G be an abelian s-group for some s ∈ π(G). If

CK(xn), CK(xn−1) 6= {1}, then there exist a divisor m1 of n and a divisor m2 of n − 1 such

that m1 6= 1 and |K| ≤
|β|s|GL

ε1
n/m1

(qm1 )|s|GL
ε2
(n−1)/m2

(qm2 )|s
|qn−(−1)n|s|qn−1−(−1)n−1|s , where β divides gcd(m1, q + 1),

ε1 = sgn((−1)m1) and ε2 = sgn((−1)m2).

Proof. Since CK(xn) 6= {1}, there exists S ∈ Syls(G) such that 1 6= CS(xn) ∈ Syls(CG(xn)),

so Lemma 2.21 shows that there exists 1 6= yn ∈ CK(xn) such that Z(K)CS(xn) = KCS(xn) ≤
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CG(yn). Also, if 1 6= yn−1 ∈ CK(xn−1), then Lemma 2.16(iii) shows that KCG(xn−1) ≤

CG(yn−1). Therefore, |clK(xn)| = |K|
|CK(xn)| divides |CG(yn)|s

|CS(xn)| = |clG(xn)|s
|clG(yn)|s and |clK(xn−1)| =

|K|
|CK(xn−1)| divides |CG(yn−1)|s

|CG(xn−1)|s = |clG(xn−1)|s
|clG(yn−1)|s . On the other hand, Lemma 2.14(ii) implies that

there exist a divisor m1 of n and a divisor m2 of n − 1 such that m1 6= 1, |clG(xn)|s
|clG(yn)|s divides

|β|s|GL
ε1
n/m1

(qm1 )|s
|qn−(−1)n|s and |clG(xn−1)|s

|clG(yn−1)|s divides
|GLε2

(n−1)/m2
(qm2 )|s

|qn−1−(−1)n−1|s , where β | gcd(m1, q + 1), ε1 =

sgn((−1)m1) and ε2 = sgn((−1)m2). Since CK(xn)CK(xn−1) ≤ K and CK(xn) ∩CK(xn−1) =

{1}, by Lemma 2.20(iv), |CK(xn)| divides |K|
|CK(xn−1)| . Therefore, |K| = |CK(xn)||clK(xn)|

divides |clK(xn−1)||clK(xn)|, hence the above statements complete the proof. �

Lemma 2.23 Let H be a finite simple group of Lie type over a field with q elements such

that |H|p = qu. If r ∈ π(H)− {p}, then there exists 1 ≤ i ≤ u such that r ∈ Zi(q) unless

(i) H = PSL2(q) and r ∈ Z2(q);

(ii) H = PSU3(q) and r ∈ Z6(q);

(iii) H = 2B2(q) and r ∈ Z4(q);

(iv) H = 2G2(q) and r ∈ Z6(q).

Proof. The proof follows immediately by considering the orders of finite simple groups of Lie

type. �

Lemma 2.24 [2, Proof of Theorem 3.3, Case 2] Let r ∈ Zn(q). If w is a non-trivial r-

element of PSLn(q) and ψ is a non-trivial field automorphism of PSLn(q), then PSLn(q)

does not contain any element g such that (ψig)
−1iw(ψig) ∈ {iw, i(wt)−1}, where for every

x, y ∈ PSLn(q), iy(x) = y−1xy.

Theorem 2.25 If N = PSUn(q) E H ≤ Aut(PSUn(q)) and cs(H) = cs(PSUn(q)), then

H ∼= PSUn(q).

Proof. Let 0 be a column vector with entries 0 and 1 be a column vector with entries 1.

Let J1 = A1 = (1), J2 =

 0 1

1 0

 and A2 =

 1 a2

0 1

, for some a2 ∈ GF (q2) − {0} such

that a2 + aq2 = 0, where GF (q2) denotes a field with q2 elements. For n ≥ 3, fix Jn =
0 0t 1

0 Jn−2 0

1 0t 0

 and An =


1 −1tAn−2 an

0 An−2 1

0 0t 1

, for some an ∈ GF (q2) with an + aqn = −1tJn−21.
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Since SUn(q) = {A ∈ SLn(q2) : AtJnA
τ = Jn}, we get that An ∈ SUn(q). Note that for a

diagonal automorphism δ of PSUn(q) of order gcd(n, q+ 1), PSUn(q).〈δ〉 ∼= PGUn(q) and an

easy calculation shows that |CPGUn(q)(AnZ(GUn(q)))| is a p-number. Thus if H contains a

non-trivial diagonal automorphism, then |CH∩(PSUn(q).〈δ〉)(Ān)| is a p-number and hence, for

some s ∈ π(H ∩ (PSUn(q).〈δ〉)/PSUn(q)), |clH(Ān)|s > |PSUn(q)|s, where Ān is the image of

An in H. Therefore, |clH(Ān)| ∈ cs(H)− cs(PSUn(q)). So cs(H) 6= cs(PSUn(q)), which is a

contradiction. This shows that H does not contain any diagonal automorphism of PSUn(q).

Now let H contain a field automorphism ψ. If n is odd, then let r ∈ Zn(−q) and let A

be a non-trivial r-element of PSUn(q). An easy verification shows that Zn(−q) ⊆ Zn(q2),

so r ∈ Zn(q2). Since PSUn(q) . PSLn(q2), Lemma 2.24 shows that CPSUn(q).〈ψ〉(iA) =

CPSUn(q)(iA), where for every x ∈ PSUn(q), iA(x) = A−1xA. Also, it is known that

|CPSUn(q)(iA)| = (qn+1)
(q+1)gcd(n,q+1) . Therefore, for some divisors k′ 6= 1 of k and k′′ of gcd(n, q+1),

|clH(iA)| = k′k′′|GUn(q)|
(qn+1) , which is a contradiction because by Lemma 2.13(i), |GUn(q)|

(qn+1) is maximal

in cs(PSUn(q)) by divisibility. Now let n be even and r ∈ Zn(−q). Again an easy verification

shows that Zn(−q) ⊆ Zn/2(q2) and hence, r ∈ Zn/2(q2). Let A be a non-trivial r-element of

SLn/2(q2). Then since SUn(q) = {C ∈ SLn(q2) : CtKnC
τ = Kn}, where In = diag(1, . . . , 1︸ ︷︷ ︸

n−times

)

and Kn =

 0 In/2

In/2 0

, we have E =

 (At)−1 0

0 Aτ

Z(SUn(q)) is an r-element of PSUn(q) and

hence, by considering Lemma 2.24, we see that CPSUn(q).〈ψ〉(iE) = CPSUn(q)(iE). Thus apply-

ing the above argument leads us to a contradiction.

This shows that H does not contain any field automorphism of PSUn(q). The same rea-

soning shows that H does not contain any diagonal-field automorphism. Thus H ∼= PSUn(q),

as claimed. �

3 The proof of the main theorem

By assumption, n ≥ 3 and since PSUn(q) is considered as a simple group, (n, q) 6= (3, 2).

Define the natural function τ as follows:

τ(m) =


m, if m and m/2 are even

m/2, if m is even and m/2 is odd

2m, if m is odd

.
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Since q = pk, for every natural numberm, Zτ(m)k(p) ⊆ Zm(−q) and by Lemma 2.2, Zτ(m)k(p) =

∅ if and only if (m, q) ∈ {(3, 2), (2, 3), (2, 2)}. Thus Zτ(n)k(p) 6= ∅ and also, Zτ(n−1)k(p) = ∅

if and only if (n, q) ∈ {(4, 2), (3, 3)}. So hereafter, we may assume rn ∈ Zτ(n)k(p) ⊆ Zn(−q).

Also, if (n, q) 6= (4, 2), (3, 3), let rn−1 ∈ Zτ(n−1)k(p) ⊆ Zn−1(−q) and otherwise, let rn−1 = rn.

For α ∈ {n, n − 1}, suppose that xα is an rα-element of G − {1} and let N be a normal

subgroup of G such that for some s ∈ π(G), N is s-elementary abelian and |N | = se. We

prove that N = 1. Suppose by contradiction that N 6= 1 and hence, Os(G) 6= 1. Since N is a

normal and abelian subgroup of G, we deduce that for every y ∈ N − {1},

clG(y) ⊂ N ≤ CG(y). (3)

Therefore,

|clG(y)| < |N | ≤ |CG(y)|s ≤ |G|s. (4)

Let N = Ω1(Os(G)), then

|clG(y)| < |Os(G)| ≤ |G|s. (5)

We prove the main theorem in a sequence of steps.

Step 1. If n is prime or (n, q) = (4, 2), then Os(G) ∩ CG(xn) = {1}. Moreover, if n − 1 is

prime and q + 1 | n, then Os(G) ∩ CG(xn−1) = {1}.

Proof. Let n be a prime or (n, q) = (4, 2) and let 1 6= yn ∈ Os(G)∩CG(xn). By Remark 2.18,

|G| = |PSUn(q)| and

|clG(yn)| ∈ {γ ∈ cs(G)− {1} : |γ|rn < |PSUn(q)|rn} =
{ |GUn(q)|

(qn − (−1)n)

}
.

Also, by (5), qn(n−1)/2+(n−1) < |GUn(q)|
(qn−(−1)n) = |clG(yn)| < |Os(G)| ≤ |G|s and either n 6= 3 and

|G|s = |PSUn(q)|s < qmax{n(n−1)/2,2.4n−0.8} or |G|s = |PSUn(q)|s < q5, which is impossible.

So Os(G) ∩ CG(xn) = {1}.

Let n− 1 be prime and q + 1 | n. If 1 6= yn−1 ∈ Os(G) ∩CG(xn−1), then replacing rn and

|GUn(q)|
(qn−(−1)n) with rn−1 and |GUn(q)|

(qn−1−(−1)n−1)(q+1)
in the above statement completes the proof. �

Step 2. If s 6= p, then Os(G) ∩ CG(xn) = {1} and if s = p, then Os(G) ∩ CG(xn−1) 6= {1}.

In particular, Z(Op(G)) ∩ CG(xn−1) 6= {1} and if 1 6= yn−1 ∈ Z(Op(G)) ∩ CG(xn−1), then n

is not prime, q + 1 - n and |clG(yn−1)| = |GUn(q)|
(q+1)|GUn−1(q)| .
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Proof. On the contrary, let s 6= p and 1 6= yn ∈ Os(G)∩CG(xn). Thus there exists a divisor m

of n such that m 6= 1 and |clG(yn)| = |GUn(q)|
β|GLε

n/m
(qm)| , where ε = sgn((−1)m) and β | gcd(m, q+1).

Also by (5), |clG(yn)| < |Os(G)| ≤ |G|s. Thus Lemma 2.20(v) shows that |GUn(q)|
β|GLε

n/m
(qm)| ≤

(|GUn(q)|s)2

|qn−(−1)n|s|q+1|s|qn−1−(−1)n−1|s , which is impossible. Therefore, Os(G) ∩ CG(xn) = {1}, as

wanted.

Now let s = p. Suppose by contradiction that Op(G) ∩ CG(xn−1) = {1}. Thus |Op(G)| ≤

|clG(xn−1)|p ≤ |PSUn(q)|p, by Lemma 2.4(ii). If 1 6= y ∈ Op(G) ∩ CG(xn), then by Lemma

2.14(ii) and (5), there exists a divisor m of n such that m 6= 1 and |clG(y)| = |GUn(q)|
β|GLε

n/m
(qm)| ,

where ε = sgn((−1)m) and β | gcd(m, q+1), and |clG(y)| < |Op(G)|. Therefore, |GUn(q)|
β|GLε

n/m
(qm)| <

|PSUn(q)|p, which is impossible. So Op(G)∩CG(xn) = {1} and Lemma 2.4(v) forces rn−1, rn |

|Op(G)| − 1 = pa − 1. Thus τ(n)k, τ(n − 1)k | a. This shows that n(n − 1)k | a, which is

impossible because pa = |Op(G)| ≤ |PSUn(q)|p = pn(n−1)k/2. Therefore, Op(G)∩CG(xn−1) 6=

{1}, as claimed. The same reasoning shows that Z(Op(G)) ∩ CG(xn−1) 6= {1}.

If Z(Op(G)) ∩ CG(xn−1) 6= {1} and n is prime, then since Remark 2.18 shows that

|G| = |PSUn(q)| and |clG(xn−1)|p = |PSUn(q)|p, we get that |CG(xn−1)|p = 1, which is a

contradiction. So if Op(G) 6= {1}, then n is not prime.

Finally suppose, contrary to our claim, that 1 6= yn−1 ∈ Z(Op(G)) ∩ CG(xn−1) such that

|clG(yn−1)| 6= |GUn(q)|
(q+1)|GU(n−1)(q)|

. Lemma 2.14(ii) shows that there exists a divisor m 6= 1 of n−1

such that |clG(yn−1)| = |GUn(q)|
(q+1)|GLε

(n−1)/m
(qm)| , where ε = sgn((−1)m). If Z(Op(G)) ∩ CG(xn) =

{1}, then Lemma 2.4(ii) shows that |Z(Op(G))| < |clG(xn)|p ≤ |PSUn(q)|p = qn(n−1)/2. If

Z(Op(G)) ∩ CG(xn) 6= {1}, then applying Lemma 2.22 leads us to divisor m1 6= 1 of n

such that |Z(Op(G))| < q
(n−1)((n−1)/m−1)

2 q
n(n/m1−1)

2 . On the other hand, yn−1 ∈ Z(Op(G)), so

|clG(yn−1)| < |Z(Op(G))| and hence, |GUn(q)|
(q+1)|GLε

(n−1)/m
(qm)| < qn(n−1)/2 or |GUn(q)|

(q+1)|GLε
(n−1)/m

(qm)| <

q
(n−1)((n−1)/m−1)

2 q
n(n/m1−1)

2 , which it is impossible. �

Step 3. Let N 6= {1}. Then n ≥ 9 and {q, s} = {2, 3} or n ≥ 6, s = p, n is not prime and

q + 1 - n. If s = p and n = 6, then Op(G) ∩ CG(xn) = {1}.

Proof. Let s 6= p. By Step 2, N ∩ CG(xn) = {1}. Lemma 2.4(ii) and (4) show that for every

y ∈ G, |clG(y)| < |N | ≤ |clG(xn)|s ≤ |PSUn(q)|s. Lemma 2.17(iii) gives that {q, s} = {2, 3}.

Now let n = 8. If q = 3 and s = 2, then |N | ≤ |clG(xn)|2 ≤ 218. Since q + 1 | n and n− 1

is prime, Step 1 shows that N ∩ CG(xn−1) = {1} and hence, 〈xn−1〉 acts fixed-point-freely

on N − {1}. Thus rn−1 = O(xn−1) divides |N | − 1. But rn−1 = 547 and exp547(2) > 19,
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which is a contradiction. Now let q = 2 and s = 3. Then |N | ≤ |clG(xn)|3 ≤ 39. Since

N ∩ CG(xn) = {1}, 〈xn〉 acts fixed-point-freely on N − {1}. Thus 17 = rn = O(xn) divides

|N | − 1. But exp17(3) > 9, which is a contradiction. Thus if n = 8, then {q, s} 6= {2, 3}.

The same reasoning shows that if n ∈ {6, 7}, then {q, s} 6= {2, 3}; if n = 5, (q, s) 6= (3, 2);

and if n = 4, (q, s) 6= (2, 3). If n = 5 and (q, s) = (2, 3), then since |N | ≤ |clG(xn)|3 ≤ 35,

for ever y ∈ N , |clG(y)| < |N | ≤ 243, by (4). Therefore, considering the elements of cs(G)

shows that for every y ∈ N − {1}, |clG(y)| ∈ {165, 176}, so for some l, h ∈ N∪ {0} and a ≤ 5,

165l + 176h = |N | − 1 = 3a − 1, which is impossible. Thus if n = 5, then (q, s) 6= (2, 3). The

same reasoning shows that if n ∈ {3, 4}, then (q, s) 6= (3, 2), as desired.

If s = p, then Step 2 shows that n is not prime and q + 1 - n. So n 6= 3, 5.

Now let n = 4, s = p and Op(G) 6= {1}. Step 2 shows that there exists 1 6= yn−1 ∈

CG(xn−1)∩Op(G). Thus since Z(Op(G))CG(xn−1) ≤ CG(yn−1), rn−1 | |Z(Op(G))|/|CZ(Op(G))(xn−1)| =

pe and |Z(Op(G))|/|CZ(Op(G))(xn−1)| divides
|CG(yn−1)|p
|CG(xn−1)|p =

|clG(xn−1)|p
|clG(yn−1)|p . Also, |clG(yn−1)| ∈{

|GU4(q)|
(q+1)(q3+1)

, |GU4(q)|
(q+1)|GU3(q)|

}
, so 6k | e and pe ≤ |CG(yn−1)|p

|CG(xn−1)|p =
|clG(xn−1)|p
|clG(yn−1)|p ≤ q

3. This shows that

e = 0 and hence, Z(Op(G)) ≤ CG(xn−1). Thus for Q ∈ Sylp(G), {1} 6= Z(Op(G)) ∩ Z(Q) ≤

CG(xn−1) ∩ Z(Q), so Z(Q) ∩ CG(xn−1) 6= {1}, which is a contradiction to Lemma 2.20(i).

This forces Op(G) = {1}, as wanted.

Our next concern is the case n = 6 and s = p. If Z(Op(G))∩CG(xn) 6= {1}, then there ex-

ists 1 6= yn ∈ Z(Op(G)) ∩ CG(xn) such that for some P ∈ Sylp(CG(yn)), Z(Op(G))CP (xn) ≤

CG(yn) and CP (xn) ∈ Sylp(CG(xn)), by Lemma 2.21(ii). So there exist m ∈ {2, 3, 6} and

a divisor β of gcd(m, q + 1) such that |clG(yn)| = |GU6(q)|
β|GLε

6/m
(qm)| , where ε = sgn((−1)m).

Thus |Z(Op(G))/CZ(Op(G))(xn)| = pb divides |CG(yn)|p/|CG(xn)|p = |clG(xn)|p/|clG(yn)|p ≤

|GLε6/m(qm)|p = pa, so b ≤ a ≤ 6k. Also, Lemma 2.4(v) shows that rn | pb − 1. But

exprn(p) = 3k and hence 3k | b. This forces b ∈ {0, 3k, 6k}. On the other hand, for

Q ∈ Sylp(G), Z(Q)∩Z(Op(G)) 6= {1} and CG(xn)∩Z(Q) = {1}. Hence, Z(Op(G)) 6≤ CG(xn).

This shows that b 6= 0, so b ∈ {3k, 6k} and m ∈ {2, 3}. By step 2, Z(Op(G))∩CG(xn−1) 6= {1}.

We have CZ(Op(G))(xn)CZ(Op(G))(xn−1) ≤ Z(Op(G)) and hence, |CZ(Op(G))(xn)| = pe divides

|Z(Op(G))/CZ(Op(G))(xn−1)| = pf , pf ≤ |clG(xn−1)|p = q15 and r5 | pf − 1. Thus e ≤ f ≤ 10

and hence, q17 < |clG(yn)| < |Z(Op(G))| = pb.pe ≤ q16, which is a contradiction. This shows

that Z(Op(G))∩CG(xn) = {1}. If Op(G)∩CG(xn) 6= {1}, then Lemma 2.21(i) allows us to as-

sume that there exist zn ∈ Op(G)∩CG(xn) and P ∈ Sylp(G) such that CP (xn) ∈ Sylp(CG(xn))
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and CP (xn) ≤ CP (zn). Hence Z(Op(G))CP (xn) ≤ CG(zn). By repeating the above argument,

|Z(Op(G))| ≤ q6. On the other hand rn−1 | |Z(Op(G))/CZ(Op(G))(xn−1)| − 1 = pg − 1 and

hence 10k | g. Therefore, g = 0. So Z(Op(G)) ≤ CG(xn−1), which is a contradiction with

Lemma 2.20(i). Thus Op(G) ∩ CG(xn) = {1}, as wanted. �

In the following, let K0 = Os(G), where n ≥ 9 and {q, s} = {2, 3} or n ≥ 6, s = p, n is

not prime and q + 1 - n. Otherwise, K0 = {1}. Also, suppose that M̄0 = M0
K0

is a minimal

normal subgroup of Ḡ = G
K0

and for every x ∈ G, let x̄ be the image of x in Ḡ.

Step 4. If K0 6= {1} and M̄0 is a t-elementary abelian group for some t ∈ π(G), then

M̄0 ∩ CḠ(x̄n) = {1}.

Proof. Suppose that, to the contrary, there exists 1 6= ȳn ∈ M̄0 ∩ CḠ(x̄n). So we can assume

that yn is a t-element of CG(xn). Therefore, Lemma 2.14(ii) shows that there exist a divisor m

of n and a divisor β of gcd(m, q+1) such that |clG(yn)| = |GUn(q)|
β|GLε

n/m
(qm)| , where ε = sgn((−1)m).

Note that K0 = Os(G), so s 6= t. Since yn is a t-element, Lemmas 2.4(iv,vi) and 2.20(v), and

the same reasoning given for (3) yield that

|clG(yn)|s′ ≤ |clḠ(ȳn)| < |M̄0| (6)

≤ |CḠ(ȳn)|t = |CG(yn)|t =
|G|t

|clG(yn)|t
≤
|PSUn(q)|t|β|t|GLεn/m(qm)|t
|q + 1|t|gcd(n, q + 1)|t

,

because by Lemma 2.20(v), |G|t ≤ (|PSUn(q)|t)2. So by considering the different values of n,

m and s, and Lemma 2.17(i,ii), we see that one of the following possibilities occurs:

(I) s = p, (q, t) ∈ {(3, 2), (4, 5), (7, 2)} and (n,m) = (6, 2). If (q, t) = (3, 2), then (6) shows

that |M̄0| < |PSU6(3)|2|β|2|GL3(9)|2
4.2 ≤ 217. Since 〈x̄5〉 acts on M̄0, applying Lemma 2.4(v)

shows that 61 = r5 = O(x̄5) divides |M̄0|
|CM̄0

(x̄5)| − 1 = 2α − 1, where 2α ≤ |M̄0|2 < 217. But

exp61(2) > 17 and hence, α = 0. Therefore, CM̄0
(x̄5) = M̄0. So M̄0 ≤ CḠ(x̄5). This gives

that |M̄0| ≤ |CḠ(x̄5)|2 = |CG(x5)|2 ≤ |PSU6(3)|2 and hence, by (6), |clG(yn)|p′ < |PSU6(3)|2,

which is impossible. The same reasoning rules out the case (q, t) ∈ {(4, 5), (7, 2)}.

(II) s = p, (q, t) = (2, 3) and (n,m) ∈ {(10, 2), (8, 2)}. If n = 10 and m = 2, then (6) shows

that |M̄0| < |PSU10(2)|3|GU5(4)|3 ≤ 318. Since 〈x̄10〉 acts on M̄0, applying Lemma 2.4(v)

shows that 31 = r10 = O(x̄10) divides |M̄0|
|CM̄0

(x̄10)| −1 = 3α−1, where 3α ≤ |M̄0|3 < 318. On the

other hand, exp31(3) = 30 and hence, α = 0. This gives CM̄0
(x̄10) = M̄0, so M̄0 ≤ CḠ(x̄10).

Therefore, |M̄0| ≤ |CG(x10)|3 ≤ |PSU10(2)|3 and hence, by (6), |clG(yn)|p′ < |PSU10(2)|3,

which is impossible. The same reasoning rules out n = 8 and m = 2.
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Step 5. If K0 6= {1} and M̄0 is a t-elementary abelian group for some t ∈ π(G) − {s}, then

n ≥ 9, {q, s} = {2, 3} and t = p or n ≥ 8, s = p, (q, t) ∈ {(2, 3), (3, 2), (7, 2), (8, 3), (4, 5)}, n is

not prime and q + 1 - n.

Proof. Since K0 6= {1}, Step 3 shows that n ≥ 9 and {q, s} = {2, 3} or n ≥ 6, s = p, n is

not prime and q + 1 - n. Let {q, s} = {2, 3}. By Steps 3 and 4, K0 ∩ CG(xn) = {1} and

M̄0 ∩ CḠ(x̄n) = {1}. Thus 〈xn〉 acts fixed-point-freely on M0 − {1}. So M0 is nilpotent and

hence, Ot(G) 6= 1. Therefore, Step 3 forces t = p, as wanted. The same reasoning shows that

if n = 6 and s = p, then Ot(G) 6= 1, which is impossible by considering Step 3.

Now let s = p. Then t 6= p and by Step 4, M̄0 ∩ CḠ(x̄n) = {1}. Thus |M̄0| ≤ |clḠ(x̄n)|t =

|clG(xn)|t ≤ |PSUn(q)|t, by Lemma 2.4(ii,iv). So for some t-element 1 6= y ∈ M0, Lemma

2.4(vi) yields |clG(y)|p′ ≤ |clḠ(ȳ)| < |M̄0| ≤ |PSUn(q)|t. Thus Lemma 2.17(iii) shows that

either q + 1 - n and |clG(y)| = |SUn(q)|
|GUn−1(q)| or (q, t) ∈ {(2, 3), (3, 2), (7, 2), (8, 3), (4, 5)}. So if

(q, t) 6∈ {(2, 3), (3, 2), (7, 2), (8, 3), (4, 5)}, then |clG(y)| = |SUn(q)|
|GUn−1(q)| and hence, we can assume

that y ∈ CG(xn−1). On the other hand, Step 2 shows that Z(K0) ∩ CG(xn−1) contains a

non-trivial element z such that |clG(z)| = |SUn(q)|
|GUn−1(q)| . Since CG(xn−1) = Orn−1(CG(xn−1)) ×

Or′n−1
(CG(xn−1)), by Lemma 2.16(i), we can assume that y, z ∈ Or′n−1

(CG(xn−1)). But

Or′n−1
(CG(xn−1)) is abelian, by Lemma 2.16(i), so yz = zy. Also gcd(O(y), O(z)) = gcd(p, t) =

1. Thus Lemma 2.4(i) shows that

|clG(yz)| =
|G|

|CG(y) ∩ CG(z)|
=
|G||CG(y)CG(z)|
|CG(y)||CG(z)|

≤ |G|2

|CG(y)||CG(z)|
= |clG(y)||clG(z)| = (

|SUn(q)|
|GUn−1(q)|

)2 ≤ q4n. (7)

On other hand, yz ∈ CG(xn−1) and hence there exists a divisor m of n−1 such that |clG(yz)| =
|SUn(q)|

|GLε
(n−1)/m

(qm)| , where ε = sgn((−1)m). So by (7), |SUn(q)|
|GLε

(n−1)/m
(qm)| < q4n. This forces m = 1 and

hence, |clG(yz)| = |clG(y)| = |clG(z)|. It follows from Lemma 2.4(i) that CG(y) = CG(yz) =

CG(z). This shows that K0 ≤ CG(y) and hence, 1 6= y ∈ CG(K0). Thus Ot(CG(K0)) 6= 1

and hence, Ot(G) 6= 1. So Step 3 shows that {q, t} = {2, 3}, which is a contradiction to our

assumption. This yields that (q, t) ∈ {(2, 3), (3, 2), (7, 2), (8, 3), (4, 5)}, as wanted. �

Step 6. If K0 6= {1} and there exists t ∈ π(G) such that Ot(Ḡ) 6= {1}, then n ≥ 9,

{q, s} = {2, 3} and t = p or n ≥ 8, s = p, (q, t) ∈ {(2, 3), (3, 2), (7, 2), (8, 3), (4, 5)}, n is not

prime and q + 1 - n.

Proof. It follows immediately from Steps 3 and 5. �
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In the following, let n ≥ 8 and, if q ∈ {3, 7}, fix π = {2, p}, if q ∈ {2, 8}, fix π = {2, 3}

and if q = 4, fix π = {2, 5}. Otherwise, fix π = {p}. Let K be a maximal normal π-subgroup

of G. Also, let Ḡ = G/K, let M̄ = M/K be a minimal normal subgroup of Ḡ and for every

x ∈ G, let x̄ be the image of x in Ḡ.

Step 7. M̄ is not abelian.

Proof. On the contrary suppose that M̄ is u-elementary abelian for some u ∈ π(G). So u 6∈ π.

If Oπ(G) = 1, Oπ(G) = Op(G) or {q, s} = {2, 3} and Oπ(G) = Os(G), then Steps 3 and 6

complete the proof. So let |π| ≥ 2. Therefore, n ≥ 8,

(q, π) ∈ {(3, {2, 3}), (2, {2, 3}), (7, {2, , 7}), (8, {2, 3}), (4, {2, 5})} (8)

and u 6∈ π. If 1 6= w̄n ∈ M̄ ∩ CḠ(x̄n), then we can assume that wn is a u-element of CG(xn).

Therefore, Lemma 2.14(ii) shows that there exist a divisor 1 6= m of n and a divisor β of

gcd(m, q + 1) such that |clG(wn)| = |GUn(q)|
β|GLε

n/m
(qm)| , where ε = sgn((−1)m). Thus since wn is

a u-element, u 6∈ π and M̄ is an abelian u-group, Lemma 2.4(iv,vi) and the same reasoning

given for (3) yield that

|clG(wn)|π′ ≤ |clḠ(w̄n)| < |M̄ | (9)

≤ |CḠ(w̄n)|u = |CG(wn)|u.

On the other hand, Lemmas 2.14 and 2.20(v) imply that if u ∈ {rn, rn−1}, then |G|u =

|PSUn(q)|u and otherwise, |CG(wn)|u = |G|u
|clG(wn)|u ≤

|PSUn(q)|u|β|u|GLεn/m(qm)|u
|q+1|u|gcd(n,q+1)|u , because by

Lemma 2.20(v), |G|u ≤ (|PSUn(q)|u)2. Thus considering (9) and the different values of n, m,

q and π forces q = 2, π = {2, 3}, n = 8, m = 2 and u = 5. Applying the same argument

as that used in the proof of Lemma 2.21 allows us to assume that M̄CS̄(x̄n) ≤ CḠ(w̄n),

where S ∈ Syl5(G) and CS(xn) ∈ Syl5(CG(xn)). So r8 = 17 | |M̄ |
|CM̄ (x̄n)| − 1 = 5a − 1 and

5a ≤ |CḠ(w̄n)|5
|CḠ(x̄n)|5 =

|clḠ(x̄n)|5
|clḠ(w̄n)|5 ≤ 54. Thus a = 0 and hence M̄ ≤ CḠ(x̄n). This shows that |M̄ | ≤

|PSU8(2)|5, which leads us to get a contradiction by using (9). Therefore, M̄ ∩CḠ(x̄n) = {1}.

Now let r ∈ π − {p} and Kr ∈ Sylr(K). If y ∈ Kr ∩ CG(xn), then Lemma 2.14(ii) shows

that there exist a divisor 1 6= m1 of n and a divisor β of gcd(m1, q + 1) such that |clG(y)| =
|GUn(q)|

β|GLε
n/m1

(qm1 )| , where ε = sgn((−1)m1). Lemma 2.3(i) shows that
|GUn(q)|p′

|β|p′ |GLεn/m1
(qm1 )|p′

< |K|r ≤

|G|r, which is impossible by considering (8) and the different values of n, m and r. Thus

Kr ∩CG(xn) = {1}. On the other hand, Lemma 2.3(ii) guarantees the existence of a u-Sylow
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subgroup Mu of M such that Mu ≤ NG(Kr) and xn ∈ NG(MuKr). Since M̄ ∩CḠ(x̄n) = {1},

we get that Mu ∩ CG(xn) = {1}. Thus 〈xn〉 acts fixed-point-freely on MuKr − {1}, so

MuKr is nilpotent. Therefore, Kr ≤ NG(Mu). Also, the Frattini argument shows that G =

MNG(Mu) = KMuNG(Mu) = KNG(Mu) = KpKrNG(Mu) = KpNG(Mu), so [G : NG(Mu)]

is a p-number and hence, for every 1 6= z ∈Mu,

|clG(z))|[CG(z) : CNG(Mu)(z)]

[G : NG(Mu)]
= |clNG(Mu)(z)| < |Mu| = |M̄ |u ≤ |clḠ(x̄n)|u.

This gives that |clG(z)|p′ < |PSUn(q)|u, which is contradiction to Lemma 2.17(iii). This shows

that M̄ is non-abelian.

By Step 7, M̄ is not abelian. Thus M̄ = P1× . . .×Pm, where Pis are non-abelian isomor-

phic simple groups.

Step 8. rn−1 ∈ π(M̄). In particular, M̄ contains an rn−1-element, say x̄n−1. Also, if n

is prime, then rn ∈ π(M̄) and M̄ contains an rn-element, say x̄n.

Proof. [6, Step 5] On the contrary suppose that rn−1 6∈ π(M̄). Obviously, there exists

1 ≤ j ≤ m such that P
x̄n−1

1 = Pj . Let j 6= 1. Thus we can assume that {P1, · · · , Prn−1} is an

x̄n−1-orbit. Fix ḡi ∈ Pi such that ḡ1 is an arbitrary element in P1 and if 1 ≤ i ≤ rn−1 − 1,

then ḡi+1 = ḡ
x̄n−1

i and otherwise, ḡi = K. Hence ȳ =
∏m
i=1 ḡi ∈ CḠ(x̄n−1). Thus CḠ(x̄n−1)

contains a subgroup H isomorphic to P1, so Lemma 2.20(vii) forces P1 to be nilpotent, which

is a contradiction. Therefore, j = 1 and hence, x̄n−1 ∈ NḠ(P1) and x̄n−1 6∈ CḠ(P1). Thus we

can assume that x̄n−1 ∈ Aut(P1). So rn−1 | |Out(P1)| and rn−1 - |P1|. We thus get that P1 is

a non-abelian simple group of Lie type and the rn−1-Sylow subgroups of Aut(P1) are isomor-

phic to 〈φ〉, where φ is a field automorphism of P1. Thus Lemma 2.16(i) forces CP1(φ) to be

nilpotent, which is a contradiction. This shows that rn−1 ∈ π(M̄) and hence, M̄ contains an

rn−1-element, say x̄n−1.

If n is prime, then the same reasoning as above shows that rn ∈ π(M̄) and x̄n ∈ M̄ . �

Step 9. M̄ is a simple group, CḠ(M̄) = 1 and M̄ E Ḡ . Aut(M̄).

Proof. [6, Step 6] We first show that m = 1. If not, then we can assume that x̄n−1 ∈ P2,

so CḠ(x̄n−1) contains a subgroup H isomorphic to P1 and hence, Lemma 2.20(vii) forces

P1 to be nilpotent, which is a contradiction. Therefore, m = 1 and hence, M̄ is a simple

group. Since x̄n−1 ∈ M̄ , CḠ(M̄) ≤ CḠ(x̄n−1). Thus Lemma 2.16(i) yields that CḠ(M̄)
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is a normal and nilpotent subgroup of Ḡ. So Step 7 forces CḠ(M̄) = 1. We thus get

M̄ E Ḡ =
NḠ(M̄)

CḠ(M̄)
. Aut(M̄), as desired. �

Step 10. M̄ is a simple group of Lie type in characteristic p.

Proof. By Step 9, M̄ is a simple group. The classification of finite simple groups shows that

one of the following cases occurs:

(i) If M̄ is a sporadic simple group, then |Out(M̄)| divides 2 and hence, π(M̄) ∪ π =

π(PSUn(q)). So |G|rn = |M̄ |rn and |G|rn−1 = |M̄ |rn−1 . Therefore, x̄n, x̄n−1 ∈ M̄ . Lemma

2.20(vi) now leads to | (qn−(−1)n)
gcd(n,q+1)(q+1) |π′ | |CḠ(x̄n)| and either | (q

n−1−(−1)n−1)
gcd(n,q+1) |π′ | |CḠ(x̄n−1)| or

(q, n) ∈ {(3, 3), (2, 4)}, which is impossible by considering the sporadic simple groups.

(ii) If M̄ ∼= Altu, the alternating group of degree u, then |Out(M̄)| is a 2-number, so

rn, rn−1 ∈ π(M̄). First let (n, q) 6= (4, 2), (3, 3), (3, 4). Since n ≥ 3, τ(n) | rn − 1 and

τ(n − 1) | rn−1 − 1, u ≥ 7. So Aut(M̄) is isomorphic to the symmetric group of degree

u, Symu. Therefore, Ḡ ∈ {Altu, Symu}, by Step 9. Without loss of generality, we can as-

sume that x̄n−1 = (1 · · · rn−1), a cyclic permutation of length rn−1. Thus if Ḡ = Altu, then

CḠ(x̄n−1) = Altu−rn−1×Zrn−1 and if Ḡ = Symu, then CḠ(x̄n−1) = Symu−rn−1
×Zrn−1 . From

Lemma 2.20(vii), CḠ(x̄n−1) is nilpotent. Thus either Ḡ = Altu and u−rn−1 ≤ 3 or Ḡ = Symu

and u− rn−1 ≤ 2, so

|CḠ(x̄n−1)| ∈ {rn−1, 2rn−1, 3rn−1}. (10)

On the other hand, Lemma 2.20(vi) implies that | (q
n−1−(−1)n−1)
gcd(n,q+1) |t′ divides |CḠ(x̄n−1)|, where

either t = 1 or n ≥ 8 and (q, t) ∈ {(2, 3), (3, 2), (4, 5), (8, 3), (7, 2)}. Since π(M̄) ∪ π =

π(PSUn(q)) and (n, q) 6= (3, 4), we can see that n− 1 is an odd prime and (qn−1+1)
(q+1)gcd(n−1,q+1) =

rn−1. If gcd(n− 1, q + 1) = 1, then there exists a prime r such that (qn−1+1)+(q+1)
2(q+1) = (rn−1 +

1)/2 < r < rn−1 = (qn−1+1)
(q+1) , by [13, Lemma 1]. On the other hand, r ∈ π(M̄) ⊆ π(PSUn(q))

and hence there exists 1 ≤ m ≤ n such that m 6= n − 1 and r ∈ Zm(−q). This forces

(n, q) = (4, 3) and hence K = {1}, rn−1 = 7 and 7 ≤ u ≤ 10. But |PSU4(3)| does not

divide |Altu| and |Symu|, which is a contradiction, because G ∼= Altu or Symu. Now let

gcd(n− 1, q + 1) 6= 1. Since n− 1 is prime, gcd(n− 1, q + 1) = n− 1. Also, gcd(n− 1, q + 1)

and q+1
gcd(n,q+1) divide (qn−1+1)

gcd(n,q+1) . Thus (10) shows that n − 1 ∈ {1, 2, 3, 5} and hence, we can

check that n = 4. So K = {1}, by Step 3 and s = 1. Therefore, G ∼= Altu or Symu. Also,

(10) forces q+1
gcd(n,q+1) ∈ {1, 2, 3}. This shows that q ∈ {5, 11}. If q = 5, then rn−1 = 7 ≤ u ≤
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10 = rn−1 + 3. But |PSU4(5)| does not divide |Altu| or |Symu|, where 7 ≤ u ≤ 10, which

is impossible. Moreover, if q = 11, then rn−1 = 37. Thus π(Alt37) ⊆ π(G) = π(PSU4(11)),

which is a contradiction. Now let (q, n) = (2, 4) and | (qn−(−1)n)
(q+1)gcd(n,q+1) | = 5. Step 3 shows that

K = {1} and by the above statements, rn−1 = 5 ≤ u ≤ 8 = rn−1 + 3. On the other hand,

|PSU4(2)| = |G| = |Altu| or |Symu|, by Remark 2.18, which is a contradiction. The same

reasoning rules out the case (n, q) = (3, 3) and (3, 4).

(iii) Let M̄ be a simple group of Lie type in characteristic t, where t ∈ π(M̄). On the contrary,

suppose that t 6= p. By [18], there exists u ∈ π(M̄) − {t} such that M̄ does not contain any

element of order tu and hence, there exists a u-element w̄ ∈ M̄ such that |clM̄ (w̄)|t = |M̄ |t.

But |clM̄ (w̄)| divides |clM (w)| and |clM (w)| divides |clG(w)|. Thus |M̄ |t divides |PSUn(q)|t.

Since x̄n−1 ∈ M̄ E Ḡ, |clḠ(x̄n−1)| < |M̄ |. Considering the order of finite simple groups of Lie

type in characteristic t shows that |M̄ | ≤ (|M̄ |t)3. Since KCG(xn−1) ≤ G, we deduce that

|K/CK(xn−1)|p divides |clG(xn−1)|p = pn(n−1)k/2. On the other hand, Lemma 2.4(v) gives

that if |K/CK(xn−1)|p = pγ , then τ(n− 1)k | γ. Thus if τ(n− 1) = 2(n− 1) and τ(n) = n/2,

then qn−1 | [G : KCG(xn−1)] = |clḠ(x̄n−1)| and if τ(n − 1) = (n − 1) and τ(n) = 2n, then

q(n−1)/2 | [G : KCG(xn−1)] = |clḠ(x̄n−1)|. Therefore,

qi|clG(xn−1)|π′ ≤ |M̄ | < (|M̄ |t)3 ≤ (|PSUn(q)|t)3, (11)

where if τ(n−1) = 2(n−1), τ(n) = n/2 and p ∈ π, i = n−1, if τ(n−1) = (n−1), τ(n) = 2n

and p ∈ π, i = (n− 1)/2 and otherwise, i = 0. Thus considering (11), the conditions obtained

in Steps 3, 6, Lemma 2.16(i) and the order of finite simple groups of Lie type in characteristic

t force

A. Oπ(G) = Op(G) and (n, q, t) ∈ {(10, 2, 3), (9, 3, 2), (j, 2, 3), (j, 3, 2), (6, 4, 5) : j ∈ {6, 8}} −

{(8, 3, 2), (6, 2, 3)}

or

B. Oπ(G) = 1 and

(n, q, t) ∈ {(5, 2, 3), (5, 3, 2), (4, 8, 3), (4, 7, 2), (4, 2, 3), (4, 3, 2), (3, 3, 2), (3, 4, 5), (3, 7, 2), (3, 8, 3)}

or

C. ps | |Oπ(G)| = |K| and

(n, q, s, t) = (8, 2, 3, 43).
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If Oπ(G) = Op(G) and (n, q, t) = (8, 2, 3), then 43 = rn−1 ∈ π(M̄) ⊆ π(PSUn(q)) ⊆

{2, 3, 5, 7, 11, 17, 43}, which is impossible by considering [20, Table 1]. The same reasoning

rules out the case whenOπ(G) = Op(G) and (n, q, t) ∈ {(10, 2, 3), (6, 4, 5), (6, 3, 2)} orOπ(G) =

{1} and (n, q, t) ∈ {(5, 2, 3), (5, 3, 2), (4, 8, 3), (4, 7, 2), (4, 2, 3), (3, 4, 5), (3, 7, 2), (3, 8, 3)}. If

Oπ(G) = Op(G) and (n, q, t) = (9, 3, 2), then since |M̄ |2 ≤ |G|2 ≤ (|PSU9(3)|2)2 = 246

and M̄ E Ḡ . Aut(M̄), we can see that 547 = r7(−3) ∈ π(M̄). Therefore, there exists

1 ≤ m ≤ 2.46 such that 547 ∈ Zm(2), which is a contradiction, because exp547(2) > 2.46.

If Oπ(G) = {1} and (n, q, t) = (4, 3, 2), then Remark 2.18 and, Steps 8 and 9 show that

|G| = |PSU4(3)| = 27.36.5.7, 7 = r3 ∈ π(M̄) and M̄ E Ḡ = G . Aut(M̄), which is impossible

by considering [20, Table 1].

Now let ps | |Oπ(G)| = |K| and (n, q, s, t) = (8, 2, 3, 43). Then 43 = r7 ∈ π(M̄) ⊆ π(G) =

π(PSUn(q)) ⊆ {2, 3, 5, 7, 11, 17, 43} and by Lemma 2.14, |G|43 = |PSUn(q)|43. Therefore, [20,

Table 1] forces M̄ ∼= PSL2(43), so 5 ∈ π(K)∪ π(Out(M̄)) = π(O{2,3}(G))∪ π(Z2), which is a

contradiction.

If Oπ(G) = {1} and (n, q, t) = (3, 3, 2), then 7 = r3 ∈ π(M̄) ⊆ π(G) = π(PSUn(q)) =

{2, 3, 7}, so [20, Table 1] shows that M̄ ∼= PSL3(2) or PSL2(8) and hence, since M̄ E Ḡ .

Aut(M̄), 2, 3 ∈ π(Out(M̄)) = π(Z2) or π(Z3), which is impossible.

This shows that M̄ is a finite simple group of Lie type in characteristic p, as wanted. �

Step 11. M̄ is isomorphic to PSUn(q).

Proof. For a finite group H, fix ϕ(H) = max{expu(p) : u ∈ π(H) − {p}} and ψ(H) =

max{expu(p) : u ∈ π(H)− (Zϕ(H)(p) ∪ {p})}.

We claim that rn ∈ π(M̄). On the contradiction, suppose that rn 6∈ π(M̄). Since rn - |K|,

M̄EḠ . Aut(M̄) and M̄ is a simple group of Lie type over a field with pe elements, by Steps 9

and 10, we conclude that rn | e. If n is odd, then ϕ(G) = τ(n)k and since τ(n)k = 2nk | rn−1,

we get from considering the order of finite simple groups of Lie type over a field with pe

elements that π(M̄) contains a prime divisor u such that expu(p) ≥ e ≥ rn > τ(n)k = ϕ(G),

which is a contradiction. Now let n be even. Since by Step 8, rn−1 ∈ π(M̄), we have

ϕ(G) = ϕ(M̄) = τ(n−1)k and hence, considering the order of finite simple groups of Lie type

over a field with pe elements shows that e | τ(n − 1)k = 2(n − 1)k. Thus rn | (n − 1)k. On

the other hand, τ(n)k | rn − 1 and rn − 1 is even, so nk | rn − 1. This yields nk < (n− 1)k, a
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contradiction. Therefore, rn ∈ π(M̄), as wanted. Thus

ϕ(G) = ϕ(M̄) =

 τ(n)k, if either n is odd or (n, q) = (4, 2)

τ(n− 1)k, otherwise
. (12)

If (n, q) = (4, 2), let r = 3, if (n, q) ∈ {(5, 2), (6, 2)}, let r = 5, if n > 6 is even, let r ∈

Z2(n−3)k(p), if n ≤ 6 is even and (n, q) 6= (4, 2), (6, 2), let r ∈ Znk(p) and if n is odd and

(n, q) 6= (5, 2), let r ∈ Z2(n−2)k(p). If r = 2, then obviously r ∈ π(M̄). Now let r be odd.

By Tables 1 and 2, there exists a natural number m such that ϕ(M̄) = me and hence, if

(n, q) 6= (4, 2), (3, 3), (5, 2), (6, 2), then we can conclude from (12) that r - e, so repeating

the above argument shows that r ∈ π(M̄). Also, if (n, q) = (4, 2), then |PSU4(2)| | |G|

and π(G) = π(PSU4(2)), so since by Steps 3 and 9, K = {1} and M E G . Aut(M),

we get from [14] that M̄ = M ∼= PSU4(2), as wanted in this case. The same reasoning

shows that if (n, q) = (3, 3), then M̄ = M ∼= PSU3(3). If (n, q) = (5, 2), then by Step 8,

r = r4 = rτ(n−1)k ∈ π(M̄), as wanted. Finally if (n, q) = (6, 2), then since n− 1 is prime and

q + 1 | n, we get that K = {1} and hence, M̄ E Ḡ = G . Aut(M̄). But π(G) = π(PSU6(2))

and |PSU6(2)| | |G|, so [20, Table 1] forces M̄ ∼= PSU6(2), as wanted. Thus we can assume

that (n, q) 6= (4, 2), (3, 3), (6, 2) and r ∈ π(M̄). Therefore, since n ≥ 3, we see that

ψ(G) = ψ(M̄) =



τ(n− 2)k, if n is odd and (n, q) 6= (5, 2), (3, 3)

4, if (n, q) = (5, 2)

nk, if n ≤ 6 is even and (n, q) 6= (4, 2), (6, 2)

τ(n− 3)k, if n > 6 is even

.

Since M̄ is isomorphic to one of the simple groups mentioned in Tables 1 and 2, comparing the

above values for ϕ(M̄) and ψ(M̄) and the values obtained in Tables 1 and 2, and considering

the fact that π(M̄) ⊆ π(G) = π(PSUn(q)) show that M̄ ∼= PSUn(q), as desired. �

Step 12. K = {1}.

Proof. Since x̄n ∈ M̄ , |clM̄ (x̄n)| divides |clḠ(x̄n)|. On the other hand, |clḠ(x̄n)| divides

|clG(xn)| and |clM̄ (x̄n)| = |GUn(q)|
(qn−(−1)n) . Thus since |GUn(q)|

(qn−(−1)n) is maximal in cs(G) by divisi-

bility, by Lemma 2.13(i), we get that |clG(xn)| = |clḠ(x̄n)| and hence, Lemma 2.4(iv) forces

|G|
|CG(xn)| = |G|

|KCG(xn)| . Therefore, CG(xn)K = CG(xn), so K ≤ CG(xn). Thus N ≤ CG(xn).
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H

2Dm(pe), Dm+1(pe)

(m ≥ 4)

Bm(pe), Cm(pe)

(m ≥ 2)

Am−1(pe) 2Am−1(pe), (m is odd)

ϕ(H)
4, if (m, pe) = (3, 2)

2me, otherwise

5, if (m, pe) = (6, 2)

1, if (m, pe) = (2, 2u − 1)

me, otherwise

2, if (m, pe) = (3, 2)

2me

ψ(H)

3, if (m, pe) = (3, 2)

4, if (m, pe) = (4, 2)

1, if

(m, pe) = (2, 2u − 1)

2(m− 1)e, otherwise

4, if (m, pe) = (6, 2)

5, if (m, pe) = (7, 2)

−, if (m, pe) = (2, 2u − 1)

(m− 1)e, otherwise

−, if (m, pe) = (3, 2)

1, if (m, pe) = (3, 2u − 1)

4, if (m, pe) = (5, 2)

2(m− 2)e, otherwise

H E6(pe) E7(pe) E8(pe)

ϕ(H) 12e 18e 30e

ψ(H) 9e 14e 24e

Table 1: φ(H) and ψ(H), where H is a finite simple group of Lie type over a field with pe elements

H
2Am−1(pe),

(m is even)
F4(pe) G2(pe) 2E6(pe) 3D4(q3) 2B2(2e) 2F4(2e) 2G2(3e)

ϕ(H)

4, if (m, pe) = (4, 2)

1, if

(m, pe) = (2, 2u − 1)

2(m− 1)e, otherwise

12e 6e 18e 12e 4e 12e 6e

ψ(H)

4, if (m, pe) = (6, 2)

2, if (m, pe) = (4, 2)

−, if

(m, pe) = (2, 2u − 1)

me, if m ≤ 6, (m, pe) 6=

(2, 2u − 1), (6, 2), (4, 2)

2(m− 3)e, otherwise

8e 3e 12e
6e, if pe 6= 2

3, otherwise
e 6e e

Table 2: φ(H) and ψ(H), where H is a finite simple group of Lie type over a field with pe elements
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On the other hand, obviously, N ≤ Os(G). Thus for S ∈ Syls(G), 1 6= Z(S) ∩N ≤ CG(xn),

which is a contradiction with Lemma 2.20(i), because Step 3 shows that either s = p or

{q, s} = {2, 3}. Therefore, K = {1}, as desired. �

Step 13. G = M ∼= PSUn(q).

Proof. Since by Steps 9, 11 and 12, K = {1}, M EG . Aut(M) and M ∼= PSUn(q), Theorem

2.25 shows that G = M ∼= PSUn(q), as desired. �

The proof of the main theorem is complete.
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