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ABSTRACT
Shape memory alloys as a kind of smart materials, have two unique characteristics entitled shape memory
and pseudoelastic effects. In this paper, a nonlinear dynamic analysis of multilayered composite plate
embedded with pre-strained SMA wires under thermal condition is implemented considering both effects
of SMAs simultaneously, for the first time. The constitutive equation proposed by Brinson is used for
modelling the behaviors of SMA wires. In this work, equations of motion are derived in the framework
of Carrera’s Unified Formulation, for robust analysis of the problem. In this regard, the nonlinear strains
are employed for modelling the thermal effects and also the effect of recovery stresses in the SMA wires.
In this study not only the material properties are instantaneous variable with respect to the time and
location, but they are also unknown, which make the problem more complicated. For this aim, a transient
nonlinear finite element in conjunction with incremental iterative algorithm proposed by the author is
employed, in order to solve the equations. Results show that upon the thermal condition, the recovery
stress is generated in the SMA wires and therefore reduce the amplitude of a damped response of the
plate. One conclusion from this study is that, in contrast with many studies reported before, it cannot be
always say that the stress recovery in SMA wires is increased with increasing the pre-strain of SMA wires. In
other words, for a specified increasing in temperature, only a limit amount of pre-strain comes back to its
original shape and not more. Also, several numerical examples upon effect of different thermal condition,
different volume fraction of SMA wires and different boundary conditions have been analyzed.

1. Introduction

Shape Memory Alloy materials, due to their unique mechanical
behavior like shape memory effect, pseudoelastic effect and
also temperature-dependent material properties, show great
benefit as tools for improving the mechanical properties of5
structures. The ability to change and then recover a large strain
is a result of a reversible martensite phase transformation due to
the temperature or stress. Because of this transformation, shape
memory alloys have some unique properties, such as supere-
lasticity and recovery effects which lead to their wide aplication10
in the mechanical and aerospace engineering elements. The
SMA fibers embedded inside composites can be employed for
dynamical and structural vibration control. Parhi and singh [1]
studied a nonlinear free vibration analysis cylindrical composite
shell panels embedded with SMA fibers. They used the shape15
memory and stress recovery effect of SMA wires for improving
the natural frequency of the composite shell. Lijun et al. [2] pro-
posed amacro constitutivemodel which can be used to describe
the mechanical behavior of FG-SMA under graded tempera-
ture loading. They found that the stress decreases due to the20
martensite transformation of SMA is remarkable. Botshekanan
et al. [3]–[5] proposed a nonlinear finite element formulation
for analysis of transient dynamic response of multilayered
beam and plate embedded with SMA wires. They consider an
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instantaneous variation of martesite volume fraction and also 25
material properties of the structures for the first time. They
found a damped response of the structure due to the hysteresis
loops of SMA wires. Eshghinejad and Elahinia [6] proposed
an analytical approach to calculate the exact solution of SMA
beams deflection due to an external force. Their model is appro- 30
priate for modeling of a SMA beam. Their results are validated
with the existing plastic solution and experimental data.

Due to the shape memory effect of SMA’s and therefore gen-
erating the stress recovery upon thermal conditions, the SMA
wire are employed for improving the stiffness of structures, 35
extensively. For example, Shiau et al. [7] studied the effect of
shape memory alloys on the free vibration behavior of buckled
cross-ply and angle-ply laminated plate by varying the SMA
wire spacing. They showed that the increase of SMA wire vol-
ume fraction and pre-strain generate more recovery stress, and 40
so increase the stiffness of SMA reinforced composite laminates.
They noticed that the post-buckling deflections of the plate will
be decreased considerably. Kabir and Tehrani [8] proposed a
close form solution in order to study the thermal, mechan-
ical, and thermomechanical buckling and post-buckling of 45
symmetric laminated composite plates embedded SMA wires.
They studied the effect of recovery stress of pre-strained SMA
wires on the deformation of the plate. Khalili and Ardali [9]
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investigated the dynamic response of thin curved compos-
ite panel embedded with SMA wires subjected to low-velocity
transverse impact. They usedOne-dimensional thermodynamic50
constitutive model proposed by Liang and Rogers for modelling
the recovery stress in structure. Asadi et al. [10] studied the
large amplitude vibration and thermal post-buckling of shape
memory alloy wires reinforced hybrid composite beams with
symmetric and asymmetric lay-up, analytically. They employed55
the one-dimensional Brinson SMA model, for modelling the
recovery stress of SMA wires in the case of restrained strain.
They investigate the effects of SMA wires parameters on the
response of the structure. Asadi et al. [11] investigated the non-
linear thermal instability of moving sandwich plates. They used60
the recovery stress of SMAwires for stabilizing the geometrically
imperfection of the plate. They also employed the Brinson equa-
tion for modelling the recovery stress in SMA wires. Birman
et al. [12] observed that if the SMA wires were embedded in the
polymer composite plates, the recovery stresses are generated65
inside the structures and therefore, the impact resistance of the
structures could be improved. In all of the researches reported
above the recovery stress of SMAwires is modeled without con-
sidering the pseudoelastic effect of SMAwires. The reason is that
the pseudoelastic effect make the behavior of SMAwires instan-70
taneous and more complicated. Also in the researches done
above, the recovery stress is modeled such that always increased
with increasing the pre-strained of SMA wires. In this research
this problems are removed during the modelling the behavior
of SMA wires. Also in this research in order to robust analysis75
of the problem, the multilayered structures is modeled in the
frame work of Carrera’s Unified Formulation. In recent years,
many theories proposed for analyzing the multilayer composite
structures. Kirchhoff [13] (Classical laminate theory, CLT)
and Reissner-Mindlin [14],[15] (First-order shear deformation80
theories, FSDT) plate theories are not suitable for the analysis
of many multilayered structures [16]. They failed in order to
fulfill the interlaminar transverse shear-stress continuity (IC) at
each interface and to describe the so entitled zig-zag form of the
displacement fields (ZZ) in the laminate thickness direction. In85
the recent years, Carrera et al. [17], [18]–[20] proposed a unified
formulation (UF) of multilayered theories in the framework of
both the PVD (Principle of Virtual Displacements) and RMVT
(Reissner’s mixed variational theorem) methods. This can
be used as Equivalent-Single-Layer (ESL), if the variables are90
employed for thewhole laminate, and also termed as Layer-Wise
(LW), if the variables are used independently for each layer.

In this paper, the non-linear dynamic response of continu-
ous composite plate embedded with pre-strained SMA wires is
investigated considering the both effects of shapememory alloys95
simultaneously. The instantaneous phase transformation effects
are considered at all the points on the plate. The constitutive
equation of SMA proposed by Brinson is employed for model-
ing the effects of SMAwires. Themodels considered in this work
are derived from the Reissner’s Mixed Variational Theorem for100
modelling a priori the transverse shear and normal stresses. In
this regard, the nonlinear strains are employed formodelling the
thermal effects and also the effect of recovery stresses in the SMA
wires. In this study not only the material properties are instan-
taneous variable with respect to the time and location, but they105

are also unknown, which make the problem more complicated.
Therefore, a transient nonlinear finite element in conjunction
with incremental iterative algorithm proposed by the author is
employed, in order to solve the equations. Finally, the problem is
coded inMATLAB software for studying the both effects of SMA 110
wires on dynamic response of the SMA hybrid composite plate.

2. Constitutivemodel for the SMAwires

In this research, the one-dimensional constitutivemodel of SMA
proposed by Brinson is employed. The constitutive model of
Brinson [21] relates the stress (σ ) to the strain (ε), temperature 115
(T) and martensite fraction (ξ ) as follows:

σ − σ0 = E(ξ )(ε) − E(ξ0)(ε0) + �(ξ )(ξs) − �(ξ0)(ξs0)

+�(T − T0) (1)

Where E(ξ ),� and�(ξ ) are Young’s modulus, the thermoe-
lastic tensor, and the transformation tensor, respectively. The
terms associated with index “o” refer to the initial conditions.
In addition, E(ξ ) and �(ξ ) are defined as: 120

E(ξ ) = EA + ξ (EM − EA) (2a)

�(ξ ) = −εLE(ξ ) (2b)

Where EA and EM are Young’s modulus of SMA in austenite and
martensite phases, respectively and εL is maximum recoverable
strain. In this model, a modified cosine relation for the marten-
site volume fraction is separated as.

ξ = ξT + ξs (3)

Where ξs represents the fraction of the material that is stress- 125
inducedmartensite with single variants, and ξT denotes the frac-
tion of thematerial that is temperature-inducedmartensite with
multiple variant.Phase transformation’s kinetic equations pre-
sented as:

2.1. Conversion to detwinnedmartensite 130

For T > Ms and σ cr
s +CM(T − Ms) < σ < σ cr

f +CM
(T − Ms)

ξs = 1 − ξs0

2
× cos

(
π

σ cr
s − σ cr

f

(
σ − σ cr

f −CM (T − Ms)
))

+ 1 + ξs0

2

ξT = ξT0 − ξT0

1 − ξs0
(ξs − ξs0) (4a)

For T < Ms and σ cr
s < σ < σ cr

f

ξs = 1 − ξs0

2
× cos

(
π

σ cr
s − σ cr

f

(
σ − σ cr

f

))
+ 1 + ξs0

2

ξT = ξT0 − ξT0

1 − ξs0
(ξs − ξs0) + �Tξ (4b)
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For Mf < T < Ms and T < T0

�Tξ = 1 − ξT0

2
(cos(aM(T − Mf )) + 1)

Else �Tξ = 0135

2.2. Conversion to austenite

For T > As andCA(T − A f ) < σ < CA(T − As)

ξ = ξ0

2
cos

(
aA

(
T − As − σ

CA

)
+ 1

)
ξs = ξs0 − ξs0

ξ0
(ξ0 − ξ )

ξT = ξT0 − ξT0

ξ0
(ξ0 − ξ )

(4c)

In the above equations, σ cr
s is the critical stress for the start

of transformation and σ cr
f is the critical stress at the end of

transformation.140

3. Unified formulation and finite element analysis

TheCarrera’sUnified Formulation (CUF) allows to handlemany
theories for plates and shells, by using the separation of the
unknown variables into thickness functions (coordinate z), and
the in-plane coordinates (x, y) functions [17]. In the framework145
of Carrera’s unified formulation, the generic variable a(x, y, z)
and its variation δa(x, y, z) can be expressed as bellow [17]:

a(x, y, z) = Fτ (z)aτ (x, y), δa(x, y, z) = Fs(z)δas(x, y)
with τ, s = t, b, r and r = 2, . . . ,N (5)

Bold letters imply arrays and the summing convention is
defined with repeated indices τ and s. Subscripts t and b are cor-
responding to the top and bottom values. Also, r stand for the150
higher order terms of the expansion. The order of expansion N
can be expanded from first to fourth order. Functions Fτ (ζk) are
thickness functions for the kth layer. The Legendre polynomials
Pj(ζk) are explained as follows:

P0 = 1, P1 = ζk, P2 = (3ζk2 − 1)
2

, P3 = 5ζk3

2
− 3ζk

2
,

P4 = 35ζk4

8
− 15ζk2

4
+ 3

8
(6)

where ζk = 2zk/hk, while zk and hk imply the local coordinate155
and the thickness, which both are referred to kth layer, therefore
−1 ≤ ζk ≤ 1. The thickness functions are expressed by combi-
nation the Legendre polynomials as bellow [17]:

Ft = P0+P1
2

, Ft = P0−P1
2

, Fr = Pr − Pr−2, r = 2, 3, . . . ,N
(7)

These functions have the following properties:

ζk =
{

1, Ft = 1, Fb = 0, Fr = 0
−1, Ft = 0, Fb = 1, Fr = 0 (8)

These are the interface values of the variables that are160
defined as unknowns. This description can be used for
both displacement u = (ux, uy, uz) and transverse stresses

σn = (σxz, σyz, σzz) components. According to this formula-
tion, a corresponding model can be ESL when the variables are
employed for the whole multilayer and LW when the variables 165
are employed for each layer individually. The layer-wise models
allow to impose the interlaminar continuity conditions, as
bellow:

akt = ak+1
b , k = 1, . . . ,Nl − 1 (9)

where Nl is the number of the layers of the plate. The transverse
stresses are always described as LW for reaching the interlami- 170
nar continuity conditions, while the displacement descriptions
can be ESL or LW. In this study a quadratic nine-nodes finite
element is used in order to approximate the displacements and
the transverse stresses as bellow:

uk = FτNiqkτ i σ k
nM = FτNigkτ i (i = 1, . . . , 9) (10)

where Ni are the Lagrange quadratic shape functions, and: 175

qkτ i =
[
qkuxτ i qkuyτ i qkuzτ i

]T
gkτ i =

[
gkuxτ i gkuyτ i gkuzτ i

]T
(i = 1, . . . ,Nn) (11)

qkτ i and gkτ i are the nodal unknown of the element of the kth layer.

4. Finite element formulation

The principle of Hamilton, can be expressed as:

δLint − δLFin − δLext = 0 (12)

where, Lint is the internal work, LFin is the work done by the iner-
tial force and Lext is thework of the external force. The total inter- 180
nal work is devided to the mechanical work, work due to the
phase transformation and alsowork of the thermal stress respec-
tively as bellow:

Lint = LintM + LintSMA + LintT (13)

In this paper, the governing equations are derived using the
Reissner’s mixed variational theorem (RMVT) for satisfying the 185
interlaminar continuity of transverse stresses between the layers
[17], [18]. For study of sandwich plate with multilayered face-
sheets embedded with pre-strained SMA wires, the RMVT is
explained as bellow:

δ(LintM + LintT ) =
Nl∑
k=1

∫
�k

∫
Ak

{
δεkpG

T
(ξ )σ k

pC(ξ )

+ δεknG
T
(ξ )σ k

nM(ξ ) + δσ k
nM

T
(ξ )(εknG(ξ )

− εknC(ξ ))

}
d�dzk (14)

In the framework of CUF, the linear strain components are 190
explained as bellow:

εkpG(ξ ) = {εxx(ξ ), εyy(ξ ), εxy(ξ )}kT = Dp uk(ξ ) (15a)

εknG(ξ ) = {γxz(ξ ), γyz(ξ ), εzz(ξ )}kT = (Dnp + Dnz) uk(ξ )

(15b)

where the indices p and n mean the in-plane and normal com-
ponents, respectively. The differential matrices are expressed as
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bellow:

Dp =
⎡
⎣∂x 0 0
0 ∂y 0
∂y ∂x 0

⎤
⎦ , Dnp =

⎡
⎣0 0 ∂x
0 0 ∂y
0 0 0

⎤
⎦ ,

Dnz =
⎡
⎣∂z 0 0
0 ∂z 0
0 0 ∂z

⎤
⎦ (16)

Also, the 3D constitutive relations between the stress, strain195
and temperature are described as bellow:

σ k
p (ξ ) = Ck

pp(ξ )εkp(ξ ) + Ck
pn(ξ )εkn(ξ ) − λk

p(ξ )θ (17a)

σ k
n (ξ ) = Ck

np(ξ )εkp(ξ ) + Ck
nn(ξ )εkn(ξ ) − λk

n(ξ )θ (17b)

where σ k
p , σ k

p and Ck
pp, Ck

pn, Ck
np and Ck

nn are:

σ k
p (ξ ) = {

σ k
xx(ξ ), σ k

yy(ξ ), σ k
xy(ξ )

}
,

σ k
n (ξ ) = {

σ k
xz(ξ ), σ k

yz(ξ ), σ k
zz(ξ )

}
(18a)

Ck
pp(ξ ) =

⎡
⎢⎣Ck

11(ξ ) Ck
12(ξ ) Ck

16(ξ )

Ck
12(ξ ) Ck

22(ξ ) Ck
26(ξ )

Ck
16(ξ ) Ck

26(ξ ) Ck
66(ξ )

⎤
⎥⎦ ,

Ck
pn(ξ ) =

⎡
⎢⎣ 0 0 Ck

13(ξ )

0 0 Ck
23(ξ )

0 0 Ck
36(ξ )

⎤
⎥⎦

Ck
np(ξ ) =

⎡
⎣ 0 0 0

0 0 0
Ck
13(ξ ) Ck

23(ξ ) Ck
36(ξ )

⎤
⎦ ,

Ck
nn(ξ ) =

⎡
⎣ Ck

55(ξ ) Ck
45(ξ ) 0

Ck
45(ξ ) Ck

44(ξ ) 0
0 0 Ck

33(ξ )

⎤
⎦ (18b)

In the above relations Qkj stands for the stiffness of the SMA
hybrid composite for the k’th lamina of the sandwich plate and
ξ is the martensite volume fraction. The material properties of200
a SMA hybrid composite lamina are evaluated as bellow [12]:

El (ξ ) = Ec
l kc + Es(ξ )ks (19a)

Et (ξ ) = Ec
t/

(
1 −

√
.ks

(
1 − Ec

t/Es (ξ )
))

(19b)

Glt (ξ ) = Gc
ltGs(ξ )/(kcGs(ξ ) + ksGc

lt ) (19c)

υlt = υc
lt kc + υsks (19d)

where indices ‘s’ and ‘c’ imply the SMA and the composite
medium material, respectively. In the Eqs. (17) θ is the differ-
ence of temperature with respect to the reference temperature
T0. In the frame work of CUF, θ can be written as bellow:205

θ k = Ftθ k
t + Fbθ k

b + Frθ k
r = Fτ θ

k
τ τ = t, b, r,

r = 2, . . . ,N, k = 1, 2, . . . ,Nl (20)

Also, parameters λk
p and λk

n are expressed by the following
form:

λk
p = λk

pp + λk
pn =

⎡
⎢⎣Ck

11(ξ ) Ck
12(ξ ) Ck

16(ξ )

Ck
12(ξ ) Ck

22(ξ ) Ck
26(ξ )

Ck
16(ξ ) Ck

26(ξ ) Ck
66(ξ )

⎤
⎥⎦

⎡
⎢⎣αk

1

αk
2

αk
6

⎤
⎥⎦

+

⎡
⎢⎣ 0 0 Ck

13(ξ )

0 0 Ck
23(ξ )

0 0 Ck
36(ξ )

⎤
⎥⎦

⎡
⎣ 0

0
αk
3

⎤
⎦ (21a)

λk
n = λk

np + λk
nn =

⎡
⎣ 0 0 0

0 0 0
Ck
13(ξ ) Ck

23(ξ ) Ck
36(ξ )

⎤
⎦

⎡
⎢⎣αk

1

αk
2

αk
6

⎤
⎥⎦

+

⎡
⎢⎣Ck

55(ξ ) Ck
45(ξ ) 0

Ck
45(ξ ) Ck

44(ξ ) 0
0 0 Ck

33(ξ )

⎤
⎥⎦

⎡
⎢⎣0
0
αk
3

⎤
⎥⎦ (21b)

where αk
i (i = 1, 2, 3, 6) are thermal expansion coefficients.

Above relations can be explained in the compact form as bellow:

λk
p(ξ ) = λk

pp(ξ ) + λk
pn(ξ ) = Ck

pp(ξ )αk
p + Ck

pn(ξ )αk
n (22a)

λk
n(ξ ) = λk

np(ξ ) + λk
nn(ξ ) = Ck

np(ξ )αk
p + Ck

nn(ξ )αk
n (22b)

In RMVT the displacements and transverse stresses are 210
unknowns and so the constitutive Eqs. (17) must be rewritten as
bellow:

σ k
pC(ξ ) = C̃k

pp(ξ )εkpG(ξ ) + C̃k
pn(ξ )σ k

nM(ξ ) + λ̃k
p(ξ )θ (23a)

εknC(ξ ) = C̃k
np(ξ )εkpG(ξ ) + C̃k

nn(ξ )σ k
nM(ξ ) + λ̃k

n(ξ )θ (23b)

In theses equations, the new coefficients are explained as bel-
low:

C̃k
pp(ξ ) = Ck

pp(ξ ) − Ck
pn(ξ )Ck−1

nn (ξ )Ck
np(ξ )

C̃k
pn(ξ ) = Ck

pn(ξ )Ck−1
nn (ξ ) (24a)

C̃k
np(ξ ) = −Ck−1

nn (ξ )Ck
np(ξ )

C̃k
nn(ξ ) = −Cnn

k−1(ξ ) (24b)

λ̃k
p(ξ ) = Ck

pn(ξ )Ck−1
nn (ξ )λk

n(ξ ) − λk
p(ξ )

λ̃k
n(ξ ) = Ck−1

nn (ξ )λk
n(ξ ) (24c)

By substituting Eqs. (23) in Eq. (14), we have: 215

δ(LintM + LintT ) =
Nl∑
k=1

∫
�k

∫
Ak

{
δεkpG

T
C̃k

ppε
k
pG︸ ︷︷ ︸

I

+ δεkpG
T
C̃k

pnσ
k
nM︸ ︷︷ ︸

II

+ δεknG
T
σ k
nM︸ ︷︷ ︸

III

+ δσ k
nM

T
εknG︸ ︷︷ ︸

IV

− δσ k
nM

T
C̃k
npε

k
pG︸ ︷︷ ︸

V

− δσ k
nM

T
C̃k
nnσ

k
nM︸ ︷︷ ︸

VI

+ δεkpG
T
λk
p
θ
θ k︸ ︷︷ ︸

VII

− δσ k
nM

T
λk
n
θ
θ k︸ ︷︷ ︸

VIII

}
d�dzk (25)
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where the terms I-VI are related to the mechanical work and
the terms VII and VIII are the work done by the thermal stress;
therefore it can be found:

δLintM =
Nl∑
k=1

∫
�k

∫
Ak

{
δεkpG

T
C̃k

ppε
k
pG + δεkpG

T
C̃k

pnσ
k
nM

+ δεknG
T
σ k
nM + δσ k

nM
T
εknG − δσ k

nM
T
C̃k
npε

k
pG

− δσ k
nM

T
C̃k
nnσ

k
nM

}
d�dzk (26a)

δLintT =
Nl∑
k=1

∫
�k

∫
Ak

{
δεkpG

T
λ̃k
pθ

k − δσ k
nM

T
λ̃k
nθ

k}d�dzk

(26b)

By substitutingEqs. (10), (11) and (15) in Eq. (26a), we have:

δLkintM = �
{
δqkTτ i (ξ )

[
DT

p (NiI)Z̃kτ s
pp (ξ )DT

p (NjI)
]
qks j(ξ )

}
�� +

+�
{
δqkTτ i (ξ )

[
DT

p (NiI)Z̃kτ s
pn (ξ )Nj

]
gks j(ξ )

}
�� +

+�
{
δqkTτ i (ξ )

[
DT

n�(NiI)Eτ sNj + Eτ,z sNiNjI
]
gks j(ξ )

}
�� +

+�
{
δgkTτ i (ξ )

[
NiEτ sDn�(NjI) + Eτ s,zNiNjI

]
qks j(ξ )

}
�� +

−�
{
δgkTτ i (ξ )

[
NiZ̃kτ s

np (ξ )Dp(NjI)
]
qks j(ξ )

}
�� +

−�
{
δgkTτ i (ξ )

[
NiZ̃kτ s

nn (ξ )Nj

]
gks j(ξ )

}
�� (27)

where the layer’s stiffness and compliance are obtained as220
bellow: (

Z̃kτ s
pp (ξ ), Z̃kτ s

pn (ξ ), Z̃kτ s
np (ξ ), Z̃kτ s

nn (ξ )
)

=
(
C̃k

pp(ξ ), C̃k
pn(ξ ), C̃k

np(ξ ), C̃k
nn(ξ )

)
Eτ s (28)

The symbols� . . .�� means the integrals on the domain�.
The integration in the thickness direction can be evaluated as
bellow:

Eτ s,Eτ,zs,Eτ s,z =
∫
Ak

(FτFs, Fτ,z Fs, FτFs,z )dz (29)

And therefore the Eq. (27) can be rewritten as bellow:225

δLkintM = δqkTτ i (ξ )
[
Kkτ si j

uu (ξ )qks j(ξ ) + Kkτ si j
uσ (ξ )gks j(ξ )

]
+ δgkTτ i (ξ )

[
Kkτ si j

σu (ξ )qks j(ξ ) + Kkτ si j
σσ (ξ )gks j(ξ )

]
(30)

where

Kkτ si j
uu (ξ ) = �

[
DT

p (NiI)Z̃kτ s
pp (ξ )DT

p (NjI)
]
�� (31a)

Et(ξ ) = Ec
t/

(
1 −

√
ks(1 − Ec

t/Es (ξ ))
)

(31b)

Kkτ si j
σu (ξ ) = �

[
NiEτ sDn�(NjI) + Eτ s,zNiNjI

−NiZ̃kτ s
np (ξ )Dp(NjI)

]
�� (31c)

Kkτ si j
σσ (ξ ) = �

[ − NiZ̃kτ s
nn (ξ )Nj

]
�� (31d)

Above components are [3 × 3] ‘fundamental nuclei’ that the
stiffness matrices of the whole plate can be obtained by expand-
ing and assembling them through the indices k;τ ; s; i; j. The
explicit form of this nucleus are explained in appendix.230

Due to the the location dependency of the coefficients
Z̃kτ s
i j (ξ )(i, j = p, n), they must be stay in the integral domain.

The integrals in the surface and in the thickness direction are
evaluated numerically using the Gaussian quadrature method.
The selective reduced integration is employed at layer-level in 235
order to overcome the shear locking effect [18]. In this research,
for obtaining the work done by the thermal stress, the nonlin-
ear strain components are employed. Therefore, the Eq. (26b) is
rewritten as bellow:

δLintT =
Nl∑
k=1

∫
�k

∫
Ak

{
δεkpGnl

T
λ̃k
pθ

k − δσ k
nM

T
λ̃k
nθ

k}d�dzk

(32)
where εkpGnl

stand for the nonlinear in-plane strain components 240
which can be explained as bellow:

εkpGnl
(ξ ) = {εxxnl (ξ ), εyynl (ξ ), εxynl (ξ )}kT = Dpnl u

k(ξ ) (33)

where

Dpnl =
⎡
⎣∂x 0 1

2∂
2
x2

0 ∂y
1
2∂

2
y2

∂y ∂x ∂2
xy

⎤
⎦ (34)

By substituting Eqs. (10), (20) and (33) in Eq. (32), it can be
found:

δLintT = δqkTτ i (ξ )
(
Pk
uθτ i + Kkτ si j

uunlT (ξ )
)

+ δgkTτ i (ξ )Pk
σθτ i (35)

where 245

Pk
uθτ i =

⎡
⎢⎣Pk

uθτ i11

Pk
uθτ i21

Pk
uθτ i31

⎤
⎥⎦ , Pk

σθ =

⎡
⎢⎣Pk

σθτ i11

Pk
σθτ i21

Pk
σθτ i31

⎤
⎥⎦ (36)

The components of the above relations are explained as
bellow:

Pki
uθτ i11 = Eτ s�[Ni,xNj]��kkc λ̃k

p1θ
k
s j + Eτ s�[Ni,yNj]��kkc λ̃k

p3θ
k
s j

Pk
uθτ i21 = Eτ s�[Ni,yNj]��kkc λ̃k

p2θ
k
s j + Eτ s�[Ni,xNj]��kkc λ̃k

p3θ
k
s j

Pk
uθτ i31 = 0

Pk
σθτ i11 = 0
Pk
σθτ i21 = 0
Pk
σθτ i31 = Eτ s�[NiNj]��kkc λ̃k

n3θ
k
s j

(37)
where kkc is the volume fraction of the compositemedium for the
k’th layer of the structure and can be explained as bellow:

kkc = 1 − kkSx − kkSy (38)

In the relation (38), kkjs indicate the volume fraction of the 250
SMAwires in the k’th layer in the x and y directions, respectively.
In the Eq. (35) Kkτ si j

uunlθ is the stiffness matrix due to the thermal
effects and can be expressed as bellow:

Kkτ si j
uunlT =

⎡
⎣0 0 0
0 0 0
0 0 Kkτ si j

uunlT zz

⎤
⎦ (39)

where Kkτ s
uunlT zz can be evaluated as bellow:

Kkτ si j
uunlT zz = −Eτ skkc

(
�[Ni,xNj,x]��λ̃k

p1 + �[Ni,yNj,y]��λ̃k
p2

+�[Ni,xNj,y + Ni,yNj,x]��λ̃k
p3

)
θ k (40)
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In this research, for evaluating the work due to the phase255
transformation in the SMA wires, the nonlinear strain compo-
nents are used again. Therefore, δLkintSMA is described as bellow:

δLintSMA =
Nl∑
k=1

∫
�k

∫
Ak

{
δεkpGnl

T
(ξ )κk(ξ )

}
d�dzk (41)

In the above relation κk(ξ ) is obtained as bellow:

κk(ξ ) =

⎡
⎢⎣kkSxχ

k
Sx(ξ )

kkSyχ
k
Sy(ξ )

0

⎤
⎥⎦ (42)

The new terms χ k
Si(ξ )(i = x, y) are the effect of phase trans-

formation in the SMA wires in the x and y directions, respec-260
tively, which can be explained as bellow:

χ k
Sx(ξ ) = Ek

Sx(ξ
k
x )ε0 − εLEk

Sx(ξ
k
x )ξ k

x + ϑ(θ k − θ k
0 ) (43a)

χ k
Sy(ξ ) = Ek

Sy(ξ
k
y )ε0 − εLEk

Sy(ξ
k
y )ξ k

y + ϑ(θ k − θ k
0 ) (43b)

where ξ kj and Ekj
s imply the martensite volume fraction and the

Young’s modulus of the SMA wires of the k’th lamina, respec-
tively. By substituting Eqs. (10), (33) and (42) in Eq. (41), it can
be written:265

δLintSMA = δqkTτ i (ξ )(Pk
smaτ i(ξ ) + Kkτ si j

uunlSMA (ξ )) (44)

where

Pk
smaτ i(ξ ) =

⎡
⎣Pk

smaτ i11(ξ )

Pk
smaτ i21(ξ )

0

⎤
⎦ (45)

The components of the above relation are explained as
bellow:

Pki
smaτ i11 = kkSxEτ�

[
Ni,xχ

k
Sx(ξ )

]
�� (46a)

Pki
smaτ i21 = kkSyEτ�

[
Ni,yχ

k
Sy(ξ )

]
�� (46b)

In the above relation, Eτ is the integral through the thickness
and can be obtained as bellow:270

Eτ =
∫
Ak

Fτdz (47)

In the Eq. (44), Kkτ si j
uunlSMA (ξ ) is the stiffness matrix due to the

effect of phase transformation (especially due to the recovery
stress induced by the shape memory effect in the pre-strained
SMA wires) and can be explained as bellow:

Kkτ si j
uunlSMA (ξ ) =

⎡
⎣0 0 0
0 0 0
0 0 Kkτ si j

uunlSMAzz(ξ )

⎤
⎦ (48)

where Kkτ si j
uunlSMAzz(ξ ) can be obtained as bellow:275

Kkτ si j
uunlSMAzz(ξ ) = Eτ s

(
kkSx�[Ni,xNj,xχ

k
Sx(ξ )]��

+ kkSy�[Ni,yNj,yχ
k
Sy(ξ )]��

)
(49)

According to the CUF, δLkFin is explained as bellow:

δLkFin = δqkTτ i (ξ )Mksi jq̈ks j(ξ ) (50)

where

Mkτ si j

=
⎡
⎣mk

τ s�[NiNj]�� 0 0
0 mk

τ s�[NiNj]�� 0
0 0 mk

τ s�[NiNj]��

⎤
⎦

(51)

and

mk
τ s =

∫
Ak

ρkFτFsdz (52)

The method used to derive finite element stiff-
ness/compliance matrices is employed to evaluate the work 280
done by the external loads. For example, it is assumed that a
distribution of pressure is done on the layer k, with distant
ζk = ζ 1

k from the reference surface. The external work done by
this pressure is described as bellow:

δLkext =
∫

�k

δukT
(
x, y, ζ k

1
)
Pk (x, y, ζ k

1
)
d� (53)

where 285

uk = F1
τ Niqkτ i (i = 1, 2, . . . ,Nn) (54)

and Pk(x, y, ζ k
1 ) is the pressure and can be expanded

as bellow:

Pk = F1
t P

k
t + F1

r P
k
r + F1

b P
k
b = F1

τ P
k
τ , τ = t, b, r,

r = 2, 3, . . . ,N, k = 1, 2, . . . ,Nl (55)

where

Pk
τ = Nipkτ i (i = 1, 2, . . . ,Nn) (56)

pkτ i is explained as:

pkτ i =
[
pkxτ i pkyτ i pkzτ i

]T
(57)

Therefore: 290

Pk = F1
τ Nipkτ i (58)

By substituting Eq. (54) and Eq. (58) in Eq. (53), we have:

δLkext =
∫

�k

δqkTτ i (ξ )
(
F1
τ F

1
s
)
(NiNj)pks jd� = δqkTτ i (ξ )Pk

τ i (59)

where:

Pk
τ i = (F1

τ F
1
s )

⎡
⎣�[NiNj]�� pkxs j
�[NiNj]�� pkys j
�[NiNj]�� pkzs j

⎤
⎦ (60)

By substituting Eqs. (30), (35), (44), (50) and (59) in Eq. (12)
the governing equations are explained as bellow:

δqkTτ i (ξ ) : Kkτ si j
uu (ξ )qks j(ξ ) + Kkτ si j

uσ (ξ )gks j(ξ ) + Mksi jq̈ks j(ξ )

= Pk
τ i − Pk

uθτ i − Pk
sma τ i(ξ ) (61a)

δgkTτ i (ξ ) : Kkτ si j
σu (ξ )qks j(ξ ) + Kkτ si j

σσ (ξ )gks j(ξ ) = −Pk
σθτ i (61b)
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In the Eq. (59a), Kkτ si j
uu (ξ ) is the total element stiffness of the295

k’th layer and can be explained as bellow:

Kkτ si j
uu (ξ ) = Kkτ si j

uumech (ξ ) + Kkτ si j
uunlSMA (ξ ) + Kkτ si j

uunlθ (ξ ) (62)

According to the governing equation, it must be noticed
that stiffness/compliance matrices and also force vector are
dependent on the martensite volume fraction and so these
stiffness/compliance matrices are variable with time and also300
they are unknown. In other words, the governing equations of
motion are coupled with the kinetic relations of phase trans-
formation. Therefore, for solving the nonlinear equations, the
incremental iterative technique proposed by the author (see
Refs. [3]) is used. In this research the nodal stress unknown are305
eliminated by the ‘static condensation’ method. Therefore, the
Eqs. (61) can be rewritten as bellow:

K(ξ )q(ξ ) + Mq̈(ξ ) = P(ξ ) (63)

where

K(ξ ) = [Kuu(ξ ) − Kuσ (ξ )Kσσ (ξ )−1Kσu(ξ )],
P(ξ ) = P + Kuσ (ξ )Kσσ (ξ )−1Pσθ − Puθ − Psma(ξ ) (64)

The Newmark method is used for the time integration of
Eq. (63) with time as follows [22]:310

{q}m+1 = {q}m + �t{q̇}m + 1
2
�t2{q̈}m+γ (65a)

{q̇}m+1 = {q}m + �t{q̈}m+α (65b)

where {q} and {q̇} are respectively the element displacement vec-
tor and its first derivative with respect to time. Also{

q̈
}
m+α

= (1 − α)
{
q̈
}
m + α

{
q̈
}
m+1 (65c)

Here α = γ = 1/2 [22]. The set of expressions in (63) can
be reduced, with the help of Eqs. (65a)–(65c), to the discretized
form of the element equation, as bellow:315 [

K̂
]
m+1

{
q
}
m+1 =

{
F̂
}
m,m+1

(66)

where

[K̂]m+1 = [K]m+1 + a3[M]m+1 (67a){
F̂
}
m,m+1

= {F}m,m+1 + [M]m+1
(
a3

{
q
}
m + a4

{
q̇
}
m + a5

{
q̈
}
m

)
(67b)

and a3, a4 and a5 are defined as [22]:

a3 = 2
γ (�t )2

, a4 = 2
γ�t

, a5 = 1
γ

− 1 (68)

The initial value of acceleration is usually not known. As an
approximation, it can be calculated from Eq. (63) using initial
conditions on {q}0 and {F}0 (often {F} is assumed to be zero at320
t = 0): {

q̈
}
0 = [M]−1 ({Fe}0 − [K]

{
q
}
0

)
(69)

At the end of each time step, the new velocity and acceleration
vectors are computed using the following equations:{

q̈
}
m+1 = a3

({
q
}
m+1 − {

q
}
m

)
− a4

{
q̇
}
m − a5

{
q̈
}
m (70a)

Table . Material properties of the composite and SMA wires [].

Material E(GPa) υ ρ(kg/m3)

Epoxy resin . . .
Graphite fibers . . .
SMA-Martensite . . .
SMA-Austenite . . .

{
q̇
}
m+1 = {

q̇
}
m + a2

{
q̈
}
m + a1

{
q̈
}
m+1 (70b)

where a1 = α�t and a2 = (1 − α)�t .

5. Numerical results 325

A new m-file program in MATLAB software is written in order

Q3

to derivation the results based on the nonlinear finite element
formulation explained above. First of all, for verification the
effect of recovery stress or shape memory effect on the response
of plate and also assessment the accuracy of the proposed finite 330
element formulation, a composite multilayered plate embed-
ded with pre-strained SMA wires is considered. Length and
thickness of the plate are 500 mm and 9 mm, respectively [23].
The plate is made of 12 layers by which the two outer layers
are SMA/epoxy and the other ten layers are graphite/epoxy. 335
The thickness of each SMA/epoxy layer is 0.5 mm, and the
volume fraction of SMA wire is 0.57. Also, the volume fraction
of the graphite fibers in the graphite/epoxy layers is 0.5, and
the thickness of each graphite/epoxy layer is 0.8 mm. The
scheme lamination of the plate is[0◦/(±45◦)5/0◦]. The material 340
properties of the composite and the SMA wires are reported in
Table 1. In this verification the variation of temperature is such
that the generated recovery stresses in the SMA wires is about
172.1MPa [23]. The relative natural frequency of the plate is
sees in Figure 2 for different length to width ratios. It should be 345
mentioned that the relative natural frequency means the ratio
of the natural frequency of the plate, when the SMA wires are
activated to the corresponding value when the SMA wires are
not activated. As can be seen in Figure 2, a very good agreement
is observed between the results of the present formulation and 350
the results obtained by Zack et al. [23]. Also for verification of
pseudoelastic effect of SMA wires, a transient dynamic analysis
of the structure is done by the author in [23].

B/w in print, colour online

Figure . Geometry and coordinate systems of multilayered plate embedded with
pre-strained SMA wires.
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Figure . Variation of relative natural frequency with aspect ratio.
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Figure . Response history of deflection at the center of the plate for different tem-
perature (isothermal condition).Q5
Table . Material properties of shape memory alloys [].

Ea = 67 GPa T = 50◦C CM = 8 MPa/◦C

EM = 26.3 GPa Mf = 9◦C CA = 13.8 MPa/◦C
σ cr
s = 100 MPa Ms = 18.4◦C θ = 0.55 MPa/◦C

σ cr
f = 170 MPa As = 34.5◦C ρs = 6500 kg/m3

εL = 0.067 Af = 49◦C υs = 0.33

In this part, a transient dynamic analysis of simply supported
multilayered plate embedded with SMA wires (without pre-355
strained) under only mechanical loading but in different tem-
perature (isothermal condition) is investigated. In this regard,
a plate lamination scheme [0◦/90◦/90◦/0◦]s is considered. It is
assumed that the SMA wires with volume fraction of 40% are
embedded in the layers 1 and 8 in the x direction and also layers360
2 and 7 in the y direction. The material properties of the SMA
wires are presented in Table 2. Thematerial and also geometrical
properties of the plate are as bellows:

E1 = 50GPa, E2 = E3 = 10GPa, G12 = G13 = G23 = 5GPa,
ν12 = ν13 = ν23 = 0.25

αL = 1.5e − 8◦C−1, αT = 1e − 6◦C−1, ρ = 1600 kg/m3

A step impulsive pressure with amplitude P = 3MPa P =
4MPa is applied on the top surface of the plate in the z direction365
P = 4MPa. Figure 3 shows the response history at the center of
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Figure . Response history of deflection at the center of the plate for thermal-
mechanical loading.

the plate. As can be seen in this figures, the vibration amplitude
decreases gradually. The reason of this phenomenon is the phase
transformation in the SMA wires.

Loss factor of the SMA multilayered plate is evaluated using 370
themeasurement of the vibration amplitudewithin the vibration
and the below relation:

ζ = 1
2π

1
n
ln

(
x1 − xmean

xn−1 − xmean

)
(71)

According to Figure 3 it can be seen that as the temperature
increases, the SMAwires exhibit lower capability in damping the
response amplitude such that the loss factors of the response are 375
1/59%, 1/44%, 1/05%, 0/65% and 0/38% for temperatures 50◦C,
55◦C, 60◦C, 65◦C and 70◦C, respectively. In other words, the hys-
teresis level is decreased with increasing the temperature. The
reason is that the critical stress for the start of the phase trans-
formation increased with increasing the temperature and there- 380
fore the less phase transformation is occurred in the SMAwires.
In the next part, a transient nonlinear dynamic analysis of sim-
ply supported multilayered plate embedded with pre-strained
SMA wires considering both shape memory and pseudoelastic
effects, under mixed thermal- mechanical loading investigated. 385
For this aim the SMA wires are pre-strained up to 0.5% at low
temperature 20 ◦Cand embedded in the layers. Further, the SMA
hybrid composite plate is heated up to = 50°C, meanwhile the
plate undergoes the impulse mechanical loading. The deflection
response at the center of the plate is shown in Figure 4. In this 390
figure two cases are studied. In the first case the pre-strained is
zero (e= 0) and in the second case the pre-strained is 0.5% (e=
0.5%).

According to Figure 3 it can be seen that when the pre-
strain of SMA wires is considered, a remarkable reduction in 395
the amplitude of response occurred such that the amplitude
of the first pick reduced more than 10%. The reason of this
phenomenon is that upon the thermal condition, due to the
shape memory effect of pre-strained SMA wires, the recovery
stress (see Figure 4) is generated in the SMA wires and there- 400
fore increases the stiffness of the structure. The recovery stress
for the center of the top layer is marked with point A in the
Figure 4. Also a history of martesite volume fraction for the
center of the top layer is shown in Figure 5. Interpretation of
the recovery stress is described as: It is assumed that the SMA 405
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Figure . Stress-strain curve for the center of the top layer of the plate for thermal-
mechanical loading.
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Figure . Variation of martesite volume fraction with time for the center of the top
layer of the plate for thermal-mechanical loading.

wire is pre-strained at the low temperature (less thanMf ).When
the ends of SMA wire are free, upon the thermal loading, the
SMA wires tend to come back to its original shape (line As →
A f in Figure 6) or pre-strained is removed (this characteristic
of SMA is called shape memory effect). But when the ends of410
SMA wire are constrained, upon the thermal loading, the SMA
wires tend to come back to its original shape, but the constraints
prevent from this coming back and therefore according to line
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Figure . Diagram of martensite-stress-temperature and recovery stress for differ-
ent pre-strained.
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Figure . Response history of deflection at the center of the plate for different ther-
mal loading and e= .%.

As → A1in Figure 6, the recovery stress is generated in the SMA
wires. 415

The recovery stresses obtained from this research are com-
pared with results reported by Rezaei et al. in ref. [24]. As can be
seen a good agreement is obtained.

Figure 7 shows the response of the plate for different ther-
mal loading with pre-strained e0 = 0.5%. It can be seen that as 420
the temperature increases, due to the increasing of the recovery
stresses, the reduction of vibrational amplitude increases, espe-
cially for the first amplitude. Itmust bementioned that, as can be
seen from Figure 7, the reduction of amplitude for the last cycles
of response is not remarkable. The reason is that, as mentioned 425
in the case of isothermal condition (see Figure 3)with increasing
the temperature the loss factor of the response decreased.

Figure 8 shows the response of the plate for different pre-
strained of the SMA wires and specified thermal loading up
to T = 50. It can be seen that as the pre-strained increases, 430
due to the increasing of the recovery stresses, the reduction of
vibrational amplitude increases. One important point from this
figure is that in contrast with many studies reported before, it
cannot be always say that the reduction of deflection’s ampli-
tude is increased with increasing the pre-strain of SMA wires. 435
Because as can be seen in Figure 8, for a specified increasing
in temperature, with increasing the pre-strain, only a limit
reduction of deflection’s amplitude can be obtained. The reason
is that, as can be seen in Figure 11, for a specified increasing in
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Figure . Response history of deflection at the center of the plate for different pre-
strain and thermal loading to T= .
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Figure . The amplitude of the first pick of the response for different pre-strain and
thermal loading to T= .
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Figure . The recovery stress for different pre-strain and thermal loading up to
T= .

temperature, with increasing the pre-strain of the SMA wires440
the recovery stress converges to the constant value. In other
words, for obtaining a more recovery stress induced by increas-
ing the pre-strain, more thermal loading is needed. For example
according to Figure 11 it can be seen that, in order to generating
the more recovery stress in the SMA wires with pre-strain 0.2%,445
0.4% and 0.6%, the temperature must be increased up to A1, A2
and A3 respectively.

It is well known that the boundary conditions have an impor-
tant effect on the response of the plate. For this aim, the bound-
ary conditions SSSS, CCCC and CSCS are investigated, where S450
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Figure . Diagram of martensite-stress-temperature and recovery stress for pre-
strained less than %.
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Figure . Response history of deflection at the center of the plate with e = .%
and thermal loading up to T= .
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Figure . Response history of deflection at the center of the plate for different vol-
ume fraction of SMA wires, with e= .% and thermal loading up to T= .

and C mean the simply supported and clamped boundary con-
ditions, respectively. The results are shown in Figure 12 for pre-
strained e0 = 0.5% and thermal loading up to T = 50.

The effect of volume fraction of SMA wires on the response
of the plate with pre-strain of SMAwires e0= 0.5% and thermal 455
loading up to 50 is studied in Figure 13. It can be seen that, with
increasing the volume fraction of the SMA wires, the reduction
of the deflection’s amplitude is very remarkable.

The distribution of recovery stresses along the top layer of
the plate is shown in Figure 13. One important point is that in 460
many researches, it is assumed that the recovery stresses is con-
stant along the plate. While as can be seen in the Figure 14, the
recovery stress is variable for different points along the plate.
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Figure . Distribution of recovery stresses along the top layer of the plate, with e
= .% and thermal loading up to T= .
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6. Conclusion

In this research, a nonlinear dynamic analysis of multilayered465
composite plate embedded with pre-strained SMA wires under
thermal condition is investigated considering both effects of
SMAs simultaneously. The constitutive equation proposed by
Brinson is used for modelling the behaviors of SMA wires. The
equations of motion are derived in the framework of Carrera’s470
Unified Formulation, based on the RMVT. In this regard, the
nonlinear strains are employed formodelling the thermal effects
and also the effect of recovery stresses in the SMA wires. The
Newmark method is used for the time integration of the equa-
tions. For solving the coupled equations, a transient nonlinear475
finite element in conjunction with incremental iterative algo-
rithm proposed by the author is employed. Results show that
upon the thermal condition, the recovery stress is generated in
the SMA wires and therefore reduce the amplitude of a damped
response of the plate. Several numerical examples upon effect of480
different thermal condition, different volume fraction of SMA
wires and different boundary conditions have been analyzed.
Also the effect of the pre-strain of the SMAwires on the response
of the plate is extensively investigated for the first time.
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