
EPJ manuscript No.
(will be inserted by the editor)

Trace of Λ(1405) resonance in low energy K−+ 3He→ (π0Σ0) + d
reaction
J. Esmaili1, S. Marri2, M. Raeisi1 and A. Naderi Beni3

1 Department of Physics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, 115, Iran
2 Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
3 Department of Physics, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran

Received: date / Revised version: date

Abstract. In present work, we investigated K− + 3He reaction at low energies. The coupled-channel Faddeev AGS
equations were solved for K̄Nd − πΣd three-body system in momentum representation to extract the scattering am-
plitudes. To trace the signature of the Λ(1405) resonance in the πΣ invariant mass, the deuteron energy spectrum for
K− + 3He → πΣd reaction was obtained. Different types of K̄N − πΣ potentials based on phenomenological and
chiral SU(3) approaches were used. As a remarkable result of this investigation, it was found that the deuteron en-
ergy spectrum, reflecting the Λ(1405) mass distribution and width, depends quite sensitively on the K̄N − πΣ model
of interaction. Hence accurate measurements of the πΣ mass distribution have the potential to discriminate between
possible mechanisms at work in the formation of the Λ(1405).

PACS. 13.75.Jz, 14.20.Pt, 21.85.+d, 25.80.Nv describing text of that key

1 Introduction

An important issue in various aspects in strangeness nuclear
physics is the structure of Λ(1405) resonance, which has been
found to be a highly controversies topic in studying the antikaon-
nucleon interaction. The Λ(1405) resonance is a bound state of
K̄N , which exclusively decays into the πΣ(I = 0) channel
via the strong interaction. The K̄N − πΣ interaction, which is
a fundamental ingredient of the antikaonic nuclear clusters [1,
2,3,4,5,6,7,8,9,10,11,12,13,14,15,16] is also strongly dom-
inated by Λ(1405) resonance. The existence of Λ(1405) reso-
nance was first predicted by Dalitz and Tuan [17,18] in 1959
showing that the unitarity in coupled-channel K̄N−πΣ system
leads to the existence of Λ(1405). As early as in 1961 an exper-
imental evidence of this resonance was reported in the invariant
mass spectrum of the πΣ resulting from K−p→ πππΣ reac-
tion [19] at 1.15 GeV.

The K̄N interaction models which reproduce the mass of
Λ(1405) resonance and two-body scattering data can be di-
vided into two classes: those constructed phenomenologically [5,
6,20] and those derived based on chiral SU(3) dynamics [7,
8,9,10,11]. Even though the phenomenological and the chiral
SU(3) K̄N interaction models produce comparable results at
and above K̄N threshold, they differ significantly in their ex-
trapolations to sub-threshold energies [21]. The phenomeno-
logical K̄N potentials are constructed to describe the Λ(1405)
as a single pole of the scattering amplitude around 1405 MeV,
corresponding to a quasi-bound state of the K̄N system with
a binding energy of about 30 MeV. On the other hand, the
K̄N − πΣ coupled-channels amplitude resulting from chiral
SU(3) dynamics has two poles. The two poles are commonly

characterized as following: the first pole in the complex en-
ergy plane is located quite close to the K̄N threshold with a
small imaginary part, around 10-30 MeV, and a strong cou-
pling to K̄N . In turn, the second one is wider, with a rela-
tively large imaginary part around 50-200 MeV, coupling more
strongly to the πΣ channel and its pole position shows more
dependence on the specific theoretical model [22,23,24,25,26,
27]. This different pole structure comes from different off-shell
properties of the K̄N interactions. The K̄N interactions based
on the chiral SU(3) dynamics are energy-dependent, and that
in the sub-threshold become less attractive than those proposed
by the energy-independent phenomenological potentials [21].

The πΣ mass spectrum is a suitable tools to study the K̄N
reaction below the K̄N threshold. As it is impossible to per-
form the scattering experiment in the πΣ channel directly, the
resonance properties can be extracted by analyzing the invari-
ant mass distribution of the πΣ final state in reactions that pro-
duce Λ(1405) resonance. During the past decades, many ex-
perimental and theoretical searches were carried out to investi-
gate the possible observation of Λ(1405) resonance. Braun et
al., studied the K−d reaction and reported a resonance energy
around 1420 MeV [28]. In Ref. [29], the pion induced reaction
(π−p → K+πΣ) was investigated and the mass of the reso-
nance was found to be consistent with 1405 MeV. Using photo-
production reactions, the CLAS [30,31,32] and LEPS [33,34]
collaboration investigated the Λ(1405) resonance signal. Sev-
eral theoretical studies have been done to analyze the CLAS
data using different interaction models for K̄N system, which
are based on chiral SU(3) dynamics [35,36,37,38,39] and phe-
nomenological approachs [40]. Other interesting experiments
were also performed at GSI by HADES collaboration [41] and
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at J-PARC as an E31 experiment [42] to clarify the nature of
the Λ(1405) by using pp and K−d reactions, respectively. In
the E31 experiment, the πΣ mass spectra are measured for all
combinations of charges, i.e., π±Σ∓ and π0Σ0. To establish a
theoretical framework for a detailed analysis of K−d reaction,
different theoretical studies were performed. The theoretical in-
vestigations of K−d → πΣ + n have been performed in [43,
44,45,46] using a two-step process. The differential cross sec-
tions of K−d reaction were also studied in Refs. [47,48] us-
ing three-body Faddeev method and it was demonstrated that
the K−d reaction can be a useful tool for studying the sub-
threshold properties of the K̄N interaction.

The K− + 3He reaction was studied in Ref. [49] using
variational method. The Σπ invariant-mass spectrum in the
resonant capture of K− at rest in 3He were calculated by a
coupled-channel potential for K̄N − πΣ interaction. The re-
sults in Ref. [49] confirmed the Λ(1405) ansatz and the pro-
posed predictions by chiral-SU(3) (M ∼ 1420 MeV/c2) were
excluded. The authors finally proposed more stringent test by
using a 3He target. An experimental search for K̄NN bound
state was performed at J-PARC by using the in-flightK−+ 3He
reaction at 1 GeV/c [50]. In the E15 experiment, the πΣ in-
variant mass spectrum resulting from K− + 3He reaction was
measured for two combinations of charges, i.e., π±Σ∓pn. It
was shown that the production cross section of the Λ(1405)p is
∼ 10 times larger than that of the K−pp bound state observed
in Λp invariant mass which is an important information on the
production mechanism of the K−pp bound state [50].

The purpose of the present work is to explore the πΣ in-
variant mass spectra resulting from the K− + 3He → πΣd
reaction. The problem can be solved using methods developed
within three-body theories. To reduce the four-bodyK−+ 3He
system to a three-body system, we considered a p − d cluster
structure for 3He nuclei (Fig. 1). To study this reaction, the Fad-
deev amplitudes for K̄Nd−πΣd system were calculated at real
scattering energies. One of the aims is to study the role of dif-
ferent off-shell properties of the underlying interactions as they
are realized in chiral SU(3) dynamics versus phenomenological
potential models. With this method, we investigated how well
the Λ(1405) resonance manifests itself in the three-body ob-
servable. To study the dependence of the K− + 3He reaction
on the fundamental K̄N − πΣ interaction, different interac-
tion models derived from chiral SU(3) and phenomenological
approaches, were included in our calculations.

The paper is organized as follows: in Sect. 2, we will ex-
plain the Faddeev formalism used for the three-body K̄Nd
system and give a brief description of scattering amplitude for
K− + 3He → πΣd reaction. The two-body inputs of the cal-
culations and the extracted results for πΣ mass spectra are pre-
sented in Sect. 3 and in Section 4, we give conclusions.

2 Three-body treatment of K− + 3He
reaction

In the present work, the possible signature of the Λ(1405) reso-
nance in πΣ mass spectrum resulting fromK−+ 3He→ πΣd
reaction was studied. We used the three-body Faddeev AGS
equations [51]. As there are three different particles in the sys-
tem under consideration, we will have the following partitions

of the K̄Nd three-body system, defining the interacting pairs
and their allowed spin and isospin quantum numbers

(1) : K̄ + (Nd)s= 1
2 ;I= 1

2
,

(2) : N + (K̄d)s=1;I= 1
2
,

(3) : d+ (K̄N)s= 1
2 ;I=0.

(1)

The quantum numbers of the K̄Nd are I = 0 and s = 1
2 , in

actual calculations, when we include isospin and spin indices
the number of configurations is equal to three, corresponding
to different possible two-quasi-particle partitions.

The key point of the present calculations is the separable
representation of the scattering amplitudes in the two-body sub-
systems. The separable potentials for two-body subsystems are
given by

V Iii (k, k′) = gIii (k)λIii g
Ii
i (k′), (2)

where gIii (k) is used to define the form factor of the interacting
two-body subsystem with relative momentum k and isospin I
and λIii defines the strength of the interaction. The two-body
interactions are also labeled by the i values to define simulta-
neously the spectator particle and interacting pair. Using sepa-
rable potentials, we can define the two-body t-matrices in the
following form

T Iii (k, k′; z) = gIii (k) τ Iii (z − p2
i

2ηi
) gIii (k′), (3)

where the τ Iii (z)-functions are the two-body propagators em-
bedded in three-body system and pi is the spectator particle
momentum. The reduced mass ηi is also given by

ηi = mi(mj +mk)/(mi +mj +mk). (4)

The whole dynamics of K̄Nd three-body system is de-
scribed in terms of the transition amplitudes KIiIji,m;j,n, which
connect the quasi-two-body channels characterized by Eq. 1. In
Fig. 2, the three different rearrangement channels of the K̄Nd
are represented. The Faddeev AGS equations for K̄Nd systems
can be expressed by

KIK̄IK̄
K̄,m;K̄,n

=
∑
rr′

MIK̄IN
K̄,m;N,r

τ INN(rr′)K
INIK̄
N,r′;K̄,n

+
∑
rr′

MIK̄Id
K̄,m;d,r

τ Idd(rr′)K
IdIK̄
d,r′;K̄,n

KINIK̄
N,m;K̄,n

=MINIK̄
N,m;K̄,n

+
∑
rr′

MINIK̄
N,m;K̄,r

τ
IK̄
K̄(rr′)

KIK̄IK̄
K̄,r′;K̄,n

+
∑
rr′

MINId
N,m;d,rτ

Id
d(rr′)K

IdIK̄
d,r′;K̄,n

KIdIK̄
d,m;K̄,n

=MIdIK̄
d,m;K̄,n

+
∑
rr′

MIdIK̄
d,m;K̄,r

τ
IK̄
K̄(rr′)

KIK̄IK̄
K̄,r′;K̄,n

+
∑
rr′

MIdIN
d,m;N,rτ

IN
N(rr′)K

INIK̄
N,r′;K̄,n

.

(5)

Here, the operators KIiIji,m;j,n are the three-body transition
amplitudes, which describe the dynamics of the three-body K̄Nd
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Fig. 1. (Color on line) Diagrammatic representation for K− + 3He→ (πΣ) + d reaction using a p− d cluster structure for 3He nuclei.

system. To define the spectator particles or interacting parti-
cles in each subsystem, we used the i, j and k indices and
the isospin of the interacting particles is defined by Ii. Since
some potentials are rank-2, the indices n, l,m are used to de-
fine, which term of the sub-amplitudes is used. The operators
MIiIj

i,m;j,n are Born terms, which describe the effective particle-
exchange potential realized by the exchanged particle between
the quasi-particles in channels i and j. The Born terms are de-
fined by

MIiIj
i,m;j,n(pi, pj ; z) =

ΩIiIj
2

×
∫ +1

−1

dx
gIii,m(qi) g

Ij
j,n(qj)

z − p2
i

2mi
− p2

j

2mj
− (pi+pj)2

2mk

,

(6)

where the parameters ΩIiIj are the spin and isospin coupling
coefficients. The momenta qi(pi,pj) and qj(pi,pj) are given
in terms of pi and pj . We use the relations

qi = −pj −
mj

mj +mk
pi,

qj = pi +
mi

mi +mk
pj ,

(7)

where mk is exchanged particle or quasi-particle mass and x is
defined by x = p̂i · p̂j .

For the K− + 3He reaction, the initial state in the labora-
tory frame contains an incoming kaon, the projectile, and one
3He, the target, at rest. There are three possibilities for the fi-
nal state. In one, the 3He survives scattering, i.e. the final state
contains a kaon and a 3He. This is called elastic scattering. The
other is where the system goes to (K̄N) + d and (K̄d) + N
channel.

3 Results and discussion

Before we proceed to discus about the obtained results, we
shall begin with a survey on the two-body interactions, which
are the central input to our present three-body calculations. For
all two-body interactions, the angular momentum is taken to be
zero and all potentials have the separable form in momentum
representation.

Different phenomenological and chiral based potentials were
used to describe the K̄N − πΣ interaction, which is the most
important input in the K̄Nd − πΣd three-body system. The
phenomenological potentials SIDD1 and SIDD2 from Ref. [53]
are constructed to reproduce the SIDDHARTA [54] experiment
results. SIDD1 and SIDD2 potentials reproduce the one- and
two-pole structure ofΛ(1405), respectively. The potentials have
the following form

V Iαβ(k, k′) = gIα(k)λIαβ g
I
β(k′). (8)

Here, the strength parameters and the form factors of the
two-body potential are labeled by particle indices α and β to
take into account the coupling between K̄N and πΣ systems.
To study the dependence of the results to the K̄N −πΣ model
of interaction, we also used the potential given by Akaishi and
Yamazaki [1] and the new potential given in Ref. [55] which the
first one is an extremely deep potential. We referred to these po-
tentials as AY and Rev-A potentials, respectively. The Rev-A
model is a chiral based but energy-independent potential which
is a rather new and probably not well known. Five different in-
teraction models (A-E) are presented in Ref. [55]. As the A
model reproduce the lowest value of χ, the A version was cho-
sen to be used in present calculations. Most of chiral potentials
in the literatures are not suitable for Faddeev calculation or at
least will make the calculations difficult. The last K̄N poten-
tial that we used in our calculations is an energy-dependent
chiral potential (Chiral-IKS). The parameters of the energy-
dependent chiral based potential are presented in Ref. [11]. In
Table 1, the pole position(s) of the K̄N system for all models
of interaction are presented.

Two models of interaction were used to describe the pd in-
teraction. The first one is a two terms potential, which includes
the short range repulsive part of the interaction

V NdA (k, k′) =

2∑
m=1

gNdA;m(k)λNdA;m g
Nd
A;m(k′), (9)

where the functions gNdi (k) are the form factors of pd interac-
tion and are parametrized by Yamaguchi form [56]:

gNdA;m(k) =
1

k2 + (ΛNdA;m)2
. (10)

We refer to the two-term potential as V NdA . The parameters
of the V NdA potential are adjusted to reproduce the p−d phase-
shifts [57]. The physical values for data fitting were obtained
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Fig. 2. (Color on line) Diagrammatic representation for different partitions of the K̄Nd system. Defining the interacting particles, we will have
three partitions, namely K̄ + (Nd), (K̄d) + N and (K̄N) + d. The anti-kaon is defined by green circle, the nucleon by red circle and the
deuteron by brown circle.

Table 1. The pole position(s) (in MeV) of the K̄N system for different phenomenological and chiral based models of the K̄N−πΣ interaction.
X1 and X2 stands for a one- and a two-pole version of the SIDD potentials. The quantities p1 and p2 represent the first and second pole of
K̄N − πΣ system for each potential.

SIDD1 SIDD2 Chiral− IKS AY Rev −A

p1 1428.1− i46.6 1418.1− i56.9 1420.6− i20.3 1407.6− i20.0 1422.0− i20.0
p2 − 1382.0− i104.2 1343.0− i72.5 − −

by solving the Lippmann-Schwinger equations without inclu-
sion of the Coulomb interaction into the p−d system. We used
also a one-term potential for pd interaction and its parameter
are adjusted to reproduce the 3He binding energy and pd scat-
tering length. We refer to the rank one potential as V NdB . The
parameters of the the V NdA and V NdB potentials are presented in
Table 2

Table 2. The parameters of V Nd
A and V Nd

B potentials to describe the
pd interaction. The range parameters are in MeV and the strength pa-
rameters are in fm−2.

V Nd
A potential:

ΛNd
A;1 ΛNd

A;2 λNd
A;1 λNd

A;2

115 152 -0.0404 0.2967

V Nd
B potential:

ΛNd
B λNd

B

139.1 -0.0037

We need also a potential model to describe the interaction
between antikaon and deuteron. A one-channel complex poten-
tial with rank-2 were used to describe K−d interaction

V K̄d(k, k′) =

2∑
m=1

gK̄dm (k)λK̄dm;Complex g
K̄d
m (k′). (11)

The parameters of this potential are given in Ref. [58]. The
complex strength parameters and range parameters of the po-
tential are adjusted to reproduce the K−d scattering length
aK−d and also the effective range r0

K−d [58].

3.1 The one-channel AGS calculation of the
K̄Nd− πΣd

To take the coupling between K̄N and πΣ channels into ac-
count, the formalism of Faddeev equations should be extended
to include the πΣd channel. In the present subsection, the πΣd
channel of the K̄Nd system has not been included directly and
one-channel Faddeev AGS equations are solved for three-body
K̄Nd system and we approximated the full coupled-channel
interaction by using the so-called exact optical K̄N(−πΣ) po-
tential [52]. Therefore, the decaying to the πΣd channel is
taken into account through the imaginary part of the optical
K̄N(−πΣ) potential. To study the possible signature of the
Λ(1405) resonance in the π0Σ0 mass spectra in the K− +
(Nd) → πΣ + d reaction, first we should define break-up
amplitude. As we do not include the lower lying channels di-
rectly into the calculations, the only Faddeev amplitude, which
contribute in the scattering amplitude is Kd,K̄ . Therefore, the
break-up amplitude can be expressed as

T(πΣ)+d←K̄+(Nd)(kd,pd, p̄K̄ ; z) =

2∑
n=1

gI=0
πΣ (kd)

× τ I=0
(πΣ)←(K̄N)(z −

p2
d

2ηd
)K0 1

2

d,1;K̄,n
(pd, p̄K̄ ; z),

(12)

where ki is the relative momentum between the interacting pair
(jk) and p̄K̄ is the initial momentum of K̄ in K̄Nd center of
mass. The quantity KIiIji(m),j(n) is the Faddeev amplitude, which
is derived from Faddeev equation (5).
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Fig. 3. (Color on line) The πΣ mass spectra for K− + 3He → π0Σ0 + d reaction. Different types of K̄N − πΣ potentials were used.
The kaon incident momentum is around pcmK̄ = 50 − 250 MeV/c. In panels (a), (b), (c) and (d), the values of P̄K are 50, 100, 150 and 250
MeV/c, respectively. The blue dashed and red dash-dotted curves show the mass spectrum with SIDD1 and SIDD2 potential, respectively. The
extracted results for Chiral-IKS, AY and Rev-A potentials are also depicted by black solid, brown dash-dot-dotted and green dash-dash-dotted
lines, respectively.

Using Eq.(12), we define the break-up cross section of K̄+
(Nd)→ d+ (π0Σ0) as follows:

dσ

dEd
=
ω(Nd)ωK̄
zp̄K̄

mπmΣmd

mπ +mΣ +md

∫
dΩpddΩkdpdkd

×
∑
if

|T(πΣ)+d←K̄+(Nd)(kd,pd, p̄K̄ ; z)|2,
(13)

whereEd is the deuteron energy in the center-of-mass frame of
πΣ, which is defined by

Ed = md +
p2
d

2ηd
, (14)

and the energies ω(Nd) and ωK̄ are the kinetic energy of K̄ and
Nd in the initial state.

Since the input energy of the AGS equations is above the
K̄Nd threshold, the moving singularities will appear in the

three-body amplitudes. To remove these standard singularities,
we have followed the same procedure implemented in Refs. [59,
60]. Using the so called “point-method”, we computed the cross
section of K− + (Nd)→ πΣ + d reaction.

Starting from Faddeev AGS equations 5, the π0Σ0 invari-
ant mass forK−+(Nd)→ πΣ+d reaction was calculated. In
our calculation, we studied the dependence of the mass spec-
trum on the fundamental K̄N − πΣ interaction by using five
different interaction models reproducing various pole structure
for Λ(1405) resonance. With this method, we extracted the
πΣ mass spectrum for different incident antikaon momentum
pcm
K̄

= 50− 250MeV/c. The extracted mass spectrum for mo-
menta pcm

K̄
= 50−150MeV/c is strongly affected by threshold

effects, but for the momentum pcm
K̄

= 250MeV/c the signature
of the resonance is clearly visible. Furthermore, it was found
that the πΣ mass spectrum, reflecting the Λ(1405) mass distri-
bution and width, depends quite sensitively on the K̄N − πΣ
model of interaction.
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A definitive study of the three-body K̄Nd system could be
also performed using the standard energy-dependent K̄N input
potential, too [11]. The energy-dependent potentials provide
a weaker K̄N attraction for lower energies than the energy-
independent potentials. Therefore, the quasi-bound state in K̄N
system resulting from the energy-dependent potential happens
to be shallower. In Fig. 3, a comparison is made between the
results obtained for the chiral-IKS K̄N − πΣ and the calcu-
lated mass spectra for other potentials. For energy-dependent
potential the peak structure is not located at the position of the
first pole given in table 1. These results are in agreement with
the statement that the Λ(1405) spectrum is the superposition of
two independent states and one can not see two different pole
structure in the Λ(1405) spectrum [22,26].

The key point in the present calculations is the detection of
deuteron which is a loosely bound system. Although, for large
momenta the signal of Λ(1405) overcomes the kinetic effects,
at these energies, the probability for the deuteron (as a loosely
bound system) to survive the reaction will decrease and one
would expect a rather low reaction rate for K−+ 3He→ πΣd
reaction. Therefore, an accurate measurements of the πΣ mass
distribution at an optimized value of momentum in a possible
future experiment could give a good reaction rate and less kine-
matical effects.

To study the dependence of the πΣ invariant mass on the
Nd model of interaction, in Fig. 4, we calculated the πΣ mass
spectra for two different Nd interaction, including a one-term
(V NdB ) and a two-term (V NdA ) potential. Comparing the ex-
tracted invariant mass spectra for one-term potential and the
corresponding mass spectra for the two-term potential, we can
see that the Nd interaction can affect the mass spectra espe-
cially, for energies above the K̄ + Nd mass threshold. How-
ever, the mass spectrum in energy region around the K̄N pole
position did not change seriously by changing the Nd model
of interaction.
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Fig. 4. (Color online) The invariant mass spectra for K− + 3He reac-
tion. We used the one-term (solid curves) and two-term (square sym-
bols) potential for Nd interaction to study the dependence of the πΣ
mass spectra to the Nd model of interaction. The symbols A and B
are corresponding to V Nd

A and V Nd
B , respectively. In our calculations,

the one-pole version of SIDD potential was used to describe the K̄N
interaction.

3.2 The coupled-channel AGS calculation of the
K̄Nd− πΣd

In subsection 3.1, we solved the one-channel AGS equations
for K̄Nd system and the decaying to the lower lying chan-
nels is included by using the so-called exact optical potential
for K̄N interaction. In one-channel Faddeev calculations the
effect of the τπΣ→πΣ amplitude was excluded. Based on chi-
ral unitary approach, the first and second pole of Λ(1405) have
clearly different coupling nature to the meson-baryon channels;
the higher energy pole dominantly couples to the K̄N channel,
while the lower energy pole strongly couples to the πΣ chan-
nel. Due to the different coupling nature of these resonances,
the shape of the Λ(1405) spectrum can be different depending
on the initial and final channels. In the K̄N → πΣ amplitude,
the initial K̄N channel gets more contribution from the higher
pole with a larger weight. Consequently, the spectrum shape
has a peak around 1420 MeV coming from the higher pole [22,
26]. This is obviously different from the πΣ → πΣ spectrum
which is largely affected by the lower pole. Therefore, the ex-
tracted mass spectra in subsection 3.1 can not reproduce ex-
actly the possible experimental mass spectra. To calculate the
exact πΣ mass spectra for K̄ + (Nd) reaction, we solved the
Faddeev equations for coupled-channel K̄Nd − πΣd system.
In addition to the above mentioned reaction, we need an inter-
action model for Σd and πd subsystems. In present calcula-
tions, the effect of πd interaction is neglected. To describe the
Σd interaction, we used a one term complex potential in a form
given in Eq. 11. To define the parameters of theΣd interaction,
we used the Σd scattering length, which can be extracted from
the Faddeev equations of the three-body Σ(NN)s=1,I=0 sys-
tem. The antisymmetric Faddeev equations for Σd system can
be given by

KsI,s
′I′

Σ,Σ =
∑
s′′I′′

MsI,s′′I′′

Σ,N1
τs
′′I′′

N1
(Ks

′′I′′,s′I′

N1,Σ
−Ks

′′I′′,s′I′

N2,Σ
)

KsI,s
′I′

N1,Σ
−KsI,s

′I′

N2,Σ
= 2MsI,s′I′

N1,Σ

+
∑
s′′I′′

2MsI,s′′I′′

N1,Σ
τs
′′I′′

Σ Ks
′′I′′,s′I′

Σ,Σ

−
∑
s′′I′′

MsI,s′′I′′

N1,N2
τs
′′I′′

N2
(Ks

′′I′′,s′I′

N1,Σ
−Ks

′′I′′,s′I′

N2,Σ
)

(15)

where the Σd scattering length is given by

aΣd = −4π2 µΣdK
1
2 1, 12 1

Σ,Σ (p→ 0, p′ → 0; z = −Ed) (16)

where µΣd is the reduced mass ofΣd andEd is the binding en-
ergy of deuteron. To solve Eq. 15, we need as input a potential
model for ΣN − ΛN and NN interactions. In our three-body
study, to describe the singlet and triplet ΣN interaction, we
used the potentials given in Ref. [52] and for triplet NN in-
teraction, we choose a potential of PEST type [61], which is a
separablization of the Paris potential. The Σd scattering length
value obtained with the two above mentioned ΣN − ΛN and
NN potentials is

aΣd = −1.59 + i0.71 fm−1 (17)
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The whole dynamics of coupled-channel K̄Nd−πΣd three-
body system is described in terms of the transition amplitudes
Kαβ;IiIj
i,m;j,n . The superscripts α, β = 1, 2 are included to take into

account the coupling between K̄Nd and πΣd systems. The
Faddeev AGS equations for K̄Nd − πΣd system can be ex-
pressed by

K11;IK̄IK̄
K̄,m;K̄,n

=
∑
rr′

(M1,IK̄IN
K̄,m;N,r

τ11;IN
N(rr′)K

11;INIK̄
N,r′;K̄,n

+M1,IK̄Id
K̄,m;d,r

τ11,Id
d(rr′)K

11,IdIK̄
d,r′;K̄,n

+M1,IK̄Id
K̄,m;d,r

τ12,Id
d(rr′)K

21,IdIK̄
d,r′;K̄,n

)

K11;INIK̄
N,m;K̄,n

=M1;INIK̄
N,m;K̄,n

+
∑
rr′

(M1;INIK̄
N,m;K̄,r

τ
11,IK̄
K̄(rr′)

K11,IK̄IK̄
K̄,r′;K̄,n

+M1,INId
N,m;d,rτ

11,Id
d(rr′)K

11,IdIK̄
d,r′;K̄,n

+M1,INId
N,m;d,rτ

12,Id
d(rr′)K

21;IdIK̄
d,r′;K̄,n

)

K11;IdIK̄
d,m;K̄,n

=M1;IdIK̄
d,m;K̄,n

+
∑
rr′

(M1;IdIK̄
d,m;K̄,r

τ
11;IK̄
K̄(rr′)

K11;IK̄IK̄
K̄,r′;K̄,n

+M1;IdIN
d,m;N,rτ

11;IN
N(rr′)K

11;INIK̄
N,r′;K̄,n

)

K21;IdIK̄
d,m;K̄,n

=
∑
rr′

M2;IdIπ
d,m;π,rτ

22;Iπ
π(rr′)K

21;IπIK̄
π,r′;K̄,n

K21;IdIK̄
π,m;K̄,n

=
∑
rr′

(M2;IπId
π,m;d,rτ

22;Id
d(rr′)K

21;IdIK̄
d,r′;K̄,n

+M2;IπId
π,m;d,rτ

21;Id
d(rr′)K

11;IdIK̄
d,r′;K̄,n

).

(18)

The break-up amplitude for K̄+(Nd)→ (πΣ)+d reaction
in terms of the Faddeev transition amplitudes can be given by

T(πΣ)+d←(Nd)+K̄(kd,pd, P̄K̄ ; z)

=
∑
n

gI=0
πΣ (kd)τ

I=0
πΣ←K̄N (z − Ed(pd))K

11;;0 1
2

d,1;K̄,n
(pd, P̄K̄ ; z)

+
∑
n

gI=0
πΣ (kd)τ

I=0
πΣ←πΣ(z − EN (pd))K

21;;0 1
2

d,1;K̄,n
(pd, P̄K̄ ; z)

+
∑
n

〈[π ⊗Σ]I=0 ⊗ d | π ⊗ [Σ ⊗ d]I=1〉gI=1
Σd (kπ)

× τ I=1
Σd←Σd(z − Eπ(pπ))K21;1 1

2

π,1;K̄,n
(pπ, P̄K̄ ; z),

(19)

where the momenta pπ and kπ are given by

pπ = kd −
mπ

mπ +mΣ
pd

kπ = − md

mΣ +md
kd −

mΣ(mπ +mΣ +md)

(mπ +mΣ)(mΣ +md)
pd.

(20)

As one see from Eq. 19, in coupled-channel calculations
plus the K11;;0 1

2

d,1;K̄,n
amplitude, the effect of the K21;;0 1

2

d,1;K̄,n
and

K21;1 1
2

π,1;K̄,n
are also included which accordingly, produces a more

precise mass spectrum for πΣ. Inserting the new break-up am-
plitude (Eq. 19) in Eq. 13, we can calculate the πΣ mass spec-
trum for K̄ + (Nd) → (πΣ) + d reaction. In Fig. 5, we cal-
culated the πΣ mass spectrum using different potential mod-
els for K̄N − πΣ interaction. As one can see from Fig. 5,
in the fully coupled-channel calculations the resonance part of

the mass spectrum is stronger and a more clear peak structure
can be seen in πΣ invariant mass. However, the observed peak
structure of each model of K̄N − πΣ interaction is located
at lower energies than those presented in Table 1, due to the
momentum distribution in p− d subsystem. By comparison of
results using one-channel and coupled-channel Faddeev equa-
tions, it may be possible to study the effect of τπΣ→πΣ ampli-
tude on πΣ invariant mass. As can be seen in Fig. 5, the ex-
tracted mass spectra in coupled-channel calculations are rather
different from those by one-channel Faddeev calculations and it
may be possible to discriminate between these two approaches.
Therefore, the one-channel Faddeev calculations cannot be a
strong tool to study the dynamics of Λ(1405) resonance in
K̄ + (Nd)→ (πΣ) + d reaction.

As one can see in panel (B), an accurate measurements of
the πΣ mass distribution at pK− = 100MeV/c can differen-
tiate the AY and Rev-A potentials from the others and study-
ing K− + 3He reaction at pK− = 250MeV/c, one have a
chance to discriminate between the other three potentials un-
der the consideration. Looking at Fig. 5 one can clearly that for
chiral energy-dependent potential, the magnitude of the mass
spectrum above the K̄N threshold is considerably smaller than
those by other potentials for all kaon incident momenta. There-
fore, such a combined study at two different initial energies
shows a big potential to discriminate between possible mecha-
nisms of the formation of Λ(1405) resonance.

4 Conclusion

In summary, the Faddeev-type calculations of K̄Nd system
with quantum numbers I = 0 and s = 1

2 were performed. Solv-
ing the one-channel and full coupled-channel Faddeev equa-
tions for K̄Nd − πΣd system, we calculated the πΣ mass
spectrum resulting from K− + 3He→ πΣd reaction by using
the deuteron mass spectrum. The logarithmic singularities that
appear when solving the AGS equations for the real scattering
energies have been successfully handled by making use of the
point method. To investigate the dependence of the resulting
mass spectrum on models of K̄N − πΣ interaction, different
phenomenological and chiral based potentials having the one-
and two-pole structure of Λ(1405) resonance, were used. We
have examined how well the signature of the Λ(1405) reso-
nance manifests itself in the πΣ invariant mass. By comparison
of results using different interaction models, it was found that it
may be possible to discriminate between different approaches
describing the K̄N interaction.

The πΣ mass spectrum was calculated for kaon incident
momentum pcmK− = 50−250 MeV/c. However, the kinematical
effects are important at low momenta and the signal ofΛ(1405)
is masked, we have found that within our model for momenta
above the 250 MeV/c, a clear bump produced by Λ(1405) res-
onance appear in the K− + 3He → πΣd cross section in
the energy region between the K̄N and πΣ thresholds, which
strongly suggests that the clear signals of Λ(1405) resonance
should be detected by measuring of πΣ invariant mass distri-
butions at the relevant energies.

By performing the fully coupled-channel calculations for
K̄Nd − πΣd system, we studied the dependence of the πΣ
mass spectrum on the τπΣ→πΣ amplitude. It was shown that
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Fig. 5. (Color on line) Same as Fig.3, but in the present calculations, the full coupled-channel Faddeev AGS equations for K̄Nd−πΣd system
are solved.

the full coupled-channel calculations can produce a consider-
ably different mass spectrum and the inclusion of the τπΣ→πΣ
amplitude is important for an exact study of the Λ(1405) reso-
nance structure.

This work has been financially supported by the research
deputy of Shahrekord University. The grant number was 141/2843.

References

1. Y. Akaishi and T. Yamazaki, Phys. Rev. C 65, 044005 (2002).
2. T. Yamazaki and Y. Akaishi, Phys. Lett. B 535, 70 (2002).
3. A. Dote, H. Horiuchi, Y. Akaishi and T. Yamazaki, Phys. Lett. B

590, 51 (2004).
4. A. Dote, H. Horiuchi, Y. Akaishi and T. Yamazaki, Phys. Rev. C

70, 044313 (2004).
5. N. V. Shevchenko, A. Gal and J. Mares, Phys. Rev. Lett. 98,

082301 (2007).
6. N. V. Shevchenko, A. Gal, J. Mares and J. Revai, Phys. Rev. C

76, 044004 (2007).
7. Y. Ikeda and T. Sato, Phys. Rev. C 76, 035203 (2007).
8. Y. Ikeda and T. Sato, Phys. Rev. C 79, 035201 (2009).
9. A. Dote, T. Hyodo and W. Weise, Nucl. Phys. A 804, 197 (2008).

10. A. Dote, T. Hyodo and W. Weise, Phys. Rev. C 79, 014003 (2009).
11. Y. Ikeda, H. Kamano and T. Sato, Prog. Theor. Phys. 124, 533-

539 (2010).
12. S. Marri and S. Z. Kalantari, Eur. Phys. J. A 52, 282 (2016).
13. S. Marri, S. Z. Kalantari and J. Esmaili, Eur. Phys. J. A 52, 361

(2016).
14. S. Marri and J. Esmaili, Eur. Phys. J. A 55:43 (2019).
15. S. Marri, S. Z. Kalantari and J. Esmaili, Chinese Physics C 43,

064102 (2019).
16. S. Marri, Phys. Rev. C 102, 015202 (2020).
17. R. H. Dalitz and S. F. Tuan, Phys. Rev. Lett. 2, 425 (1959).
18. R. H. Dalitz and S. F. Tuan, Annals Phys. 10, 307 (1960).
19. M. H. Alston, et al., Phys. Rev. Lett. 6, 698 (1961).
20. T. Yamazaki, Y. Akaishi, Phys. Rev. C 76, 045201 (2007).
21. T. Hyodo and W. Weise, Phys. Rev. C 77, 035204 (2008).
22. V. K. Magas, E. Oset, and A. Ramos, Phys. Rev. Lett. 95, 052301

(2005).
23. D. Jido, J. A. Oller, E. Oset, A. Ramos and U. G. Meißner, Nucl.

Phys. A 725, 181 (2003).
24. B. Borasoy, R. Nißler and W. Weise, Eur. Phys. J. A 25, 79 (2005).
25. B. Borasoy, U.-G. Meißner and R. Nißler, Phys. Rev. C 74,

055201 (2006).
26. Z.-H. Guo and J. A. Oller, Phys. Rev. C 87, 035202 (2013).



J. Esmaili, S. Marri, M. Raeisi and A. Naderi Beni: Trace of Λ(1405) resonance in low energy K− + 3He→ (π0Σ0) + d reaction 9

27. A. Feijoo, V. Magas, and A. Ramos, Phys. Rev. C 99, 035211
(2019).

28. O. Braun, et al., Nucl. Phys. B 129, 1 (1977).
29. D. W. Thomas, A. Engler, H. E. Fisk and R. W. Kraemer, Nucl.

Phys. B 56, 15 (1973).
30. K. Moriya et al., (CLAS Collaboration), Phys. Rev. C 87, 035206

(2013).
31. K. Moriya et al., (CLAS Collaboration), Phys. Rev. C 88, 045201

(2013).
32. K. Moriya et al., (CLAS Collaboration), Phys. Rev. Lett. 112,

082004 (2014).
33. J. Ahn et al., (LEPS Collaboration), Nucl. Phys. A 721, 715

(2003).
34. M. Niiyama et al., Phys. Rev. C 78, 035202 (2008).
35. L. Roca and E. Oset, Phys. Rev. C 87, 055201 (2013).
36. L. Roca and E. Oset, Phys. Rev. C 88, 055206 (2013).
37. S. X. Nakamura and D. Jido, PTEP 2014, 023D01 (2014).
38. M. Mai and U.-G. Meißner, Eur. Phys. J. A 51, 30 (2015).
39. U.-G. Meißner and T. Hyodo, Chin. Phys. C 38, 090001 (2014).
40. K. S. Myint, Y. Akaishi, M. Hassanvand and T. Yamazaki,

arXiv:1804.08240v1 [nucl-ex].
41. G. Agakishiev et al., (HADES Collaboration), Phys. Rev. C 87,

025201 (2013).
42. H. Noumi et al., (J-PARC proposal E31), http://j-

parc.jp/researcher/Hadron/en/pac0907/pdf/Noumi.pdf (2009).
43. D. Jido, E. Oset, and T. Sekihara, Eur. Phys. J. A 42, 257 (2009).
44. K. Miyagawa and J. Haidenbauer, Phys. Rev. C 85, 065201

(2012).
45. D. Jido, E. Oset, and T. Sekihara, Eur. Phys. J. A 49, 95 (2013).
46. J. Yamagata-Sekihara, T. Sekihara, and D. Jido, Prog. Theor. Exp.

Phys. 2013, 043D02 (2013).
47. S. Ohnishi, Y. Ikeda, T. Hyodo, and W. Weise, Phys. Rev. C 93,

025207 (2016).
48. K. Miyagawa, J. Haidenbauer and H. Kamada, Phys. Rev. C 97,

055209 (2018).
49. J. Esmaili, Y. Akaishi and T. Yamazaki, Phys. Lett. B 686, 23-28

(2010).
50. F. Sakuma et al., (J-PARC E15 Collaboration), JPS Conf. Proc.

32, 010088 (2020).
51. E. O. Alt, P. Grassberger, and W. Sandhas, Phys. Rev. C 1, 85

(1970).
52. N. V. Shevchenko, Phys. Rev. C 85, 034001 (2012).
53. N. V. Shevchenko, Nucl. Phys. A 890-891, 50 (2012).
54. M. Bazzi et al., (SIDDHARTA Collaboration), Phys. Lett. B 704,

113 (2011).
55. J. Revai, Few-Body Syst. 61:32 (2020).
56. Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).
57. Z.-M Chen, W. Tornow and A. Kievsky, Few-Body Syst. 35, 15-

31 (2004).
58. N. V. Shevchenko and J. Revai, Phys. Rev. C 90, 034003 (2014).
59. L. Schlessinger, Phys. Rev. 167, 1411 (1968).
60. H. Kamada, Y. Koike, and W. Gloeckle, Prog. Theor. Phys. 109,

869 (2003).
61. H. Zankel, W. Plessas, J. Haidenbauer, Phys. Rev. C 28, 538

(1983).


	Introduction
	Three-body treatment of K-+3He reaction
	Results and discussion
	Conclusion

