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a b s t r a c t 

A size-dependent structural dynamic model that incorporates the effect of geometric non- 

linearity is developed in this paper for the forced vibration, and dynamic stability of thin 

rectangular micro-plates. The equations of motion for micro-plates are derived within the 

framework of classical plate theory, modified couple stress theory (MCST), and von Kár- 

mán geometric nonlinearity using Hamilton’s principle. Galerkin method is used to con- 

vert the governing partial differential equations to a nonlinear second-order ordinary dif- 

ferential equation, which is solved by a Runge -Kutta method. The static instability analy- 

sis of the micro-plate is performed to determine the critical electrostatic voltages, and to 

avoid the pull-in instability. By tracking the static behavior of the microplate, and deter- 

mining the electrostatic pull-in voltage, the frequency response curves are plotted. In dy- 

namic response, primary, superharmonic, and subharmonic resonance are studied, and the 

frequency response equation is obtained for each case by the method of multiple scales. 

Further efforts are made to investigate the influence of size effect, electrical loading (DC 

and AC voltages), and excitation frequency on the static, and dynamic responses, critical 

AC voltages, and dynamic stability of micro-plates. It is found that the critical dynamic 

voltage is a function of the frequency of excitation force. It is shown that the stiffness of 

micro-plate decreases by increasing the constant DC voltage; however, the increase in the 

alternating AC voltage does not considerably affect the stiffness of the micro-plate. 

© 2019 Elsevier B.V. All rights reserved. 

1. Introduction 1 

Recent studies show that electrically-actuated micro-plates have a vast range of applications in microelectromechanical 2 

systems (MEMS) as actuation components in micro-pumps, micro-mirrors, microphones, micro-switches, and micro-sensors 3 

[1–6] . The actuation force can be applied to the micro-plates in the form of electrical, magnetic and thermal excitation, so- 4 

called as multi-physical stimuli [3,7–10] . In the case of electrical actuation, an electrically-actuated micro-plate is formed by 5 

a variable capacity air-gap capacitor on one side and a stationary electrode connected to the output circuit on the other side 6 

[11,12] . Electrostatic actuators contain two conductive electrodes, one movable and one fixed (grounded). Applying a voltage 7 

between the electrodes leads to the deflection of the movable electrode toward the fixed electrode [13,14] . Many studies in 8 

the literature, however, have overlooked the bending stiffness and modelled the plate as a membrane element [1,11,15–19] . 9 
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Many researchers have investigated the behavior of electrically-stimulated micro-beams in resonator sensors. These stud- 10 

ies have fallen into two categories. The first category focused on the static behavior of micro-beams bent by a DC elec- 11 

trostatic force. The second category studied the vibration behavior of micro-beams by a harmonic AC voltage. Zook et al. 12 

[20] considered micro-plates and micro-beams and calculated their fundamental frequencies using a finite element method. 13 

The natural frequencies obtained by the finite element method were higher than the measured natural frequencies measured 14 

by experimental tests. Choi and Lovell [21] calculated the static deformation of a micro-beam using a numerical integration 15 

scheme and a shooting method. Their models included electrostatic force and mid-plane stretching. Ahn et al. [22] modeled 16 

an electrically-driven micro-beam as one degree of freedom mass-spring-damper system. They used this model to obtain 17 

an analytical expression for the fundamental natural frequency as a function of constant DC voltage. The second category 18 

of research was initiated by Zook et al. [20] . They showed that increasing the AC voltage increases the resonance frequency 19 

(hardening behavior). Tilmans and Legtenberg [23] studied the dynamic problem of the system for the large values of the 20 

AC voltage using the Rayleigh-Ritz energy method, taking into account the electric forces and the stretchability of the mid- 21 

plane. Ayela and Fournier [24] studied the response of micro-beams with different geometric shapes under a total electrical 22 

excitation including DC and AC voltages. They plotted different diagrams to show the variation of resonant frequency rela- 23 

tive to the excitation amplitude for different axial loads. Laboratory results showed that some of the micromachined silicon 24 

resonators have a softening behavior for the operating conditions. While others have a hardening behavior, they concluded 25 

that a nonlinear behavior might be due to different phenomena, e.g., the mechanical properties of these resonators. Veijola 26 

et al. [25] modeled a micro-beam using a nonlinear mass and spring model of order three, which includes the stretch of 27 

the intermediate plane. Using the Harmonic Balance Method, they showed that a nonlinear term caused by electrical force 28 

leads to a softening behavior, while the stretching of the mid-plane results in a hardening behavior. 29 

Pull-in instability in micro-electromechanical devices is investigated by Konig and Wachutka [26] . This instability occurs 30 

when the input voltage trespasses a critical value called the pull-in voltage [27] . In this way, the elastic restoring force of 31 

the movable electrode cannot resist the Coulomb attraction force, and this electrode abruptly adheres to the fixed one. Ng 32 

et al. [28] have studied the characteristics of an electrically stimulated plate. The governing Laplace equation is solved by 33 

the boundary element method. Also, the nonlinear geometric factors related to the tension of the mid-plane are included 34 

in the plate model. Subsequently, electromechanical coupling equations were solved by the repetition method. Significant 35 

qualitative differences were observed between the results of the linear and nonlinear analysis for large plate deformations. 36 

Zhao et al. have studied nonlinear modeling of simply supported rectangular plates [29] . They determined static deformation 37 

using a numerical shooting method and a reduced order method. They also studied the mechanical behavior of rectangular 38 

plates under electrical excitation. The linear and nonlinear vibration of plates have been studied by a large number of 39 

researchers. Analytical methods, along with numerous numerical theories, have been widely used in practice [30] . 40 

After the dimensions have reduced to a sub-micron scale, the nano-scale phenomena emerge, which should be taken into 41 

account in establishing the theoretical models [31,32] . One of the major critical instances of the nano-scale phenomenon 42 

is the size-dependency of the mechanical performance of nanostructures, which appears in the deformation tests of mi- 43 

crostructures [33] . Due to the fact that the materials at the atomic scale are naturally discrete, the classical continuum 44 

mechanics are supposed to be insufficiently effective for modeling the size-dependent behavior of them at sub-micron dis- 45 

tances. The ever-increasing progress in micro-structure materials leads to extending the usages of higher-order continuum 46 

theories. In constructing a large number of devices in a nano-scale, the classical elasticity, due to neglect size effect, loses 47 

its efficiency [34] . In the past decades, the researchers and experts have extensively and particularly adopted higher-order 48 

continuum theories in the nano-scale studies of thin films, nano-composites, and quantum dots. Employing the classical 49 

continuum theory in the problems which encompass thin films, nano-composites, and quantum dots, yielded extremely un- 50 

expected results [35] . Couple stress theory [36] , non-local elasticity theory [37] , micro-polar elasticity theory [38] , strain 51 

gradient elasticity theory [39–42] and surface elasticity [43] are good instances of the theories developed and used to study 52 

the mechanical behaviors of micro-scale structures [31] . Modified couple stress theory introduces one material length scale 53 

parameter as an additional elastic constant to interpret the size-dependent behavior of elastic solids [44] . In the following, 54 

some of the works on the modified couple stress theory will be reviewed. Tsiatas [45] presented a size-dependent model 55 

for testing the static flexure of thin micro-plates based on assumptions Kirchhoff model. He concluded that in the smaller 56 

thickness of the micro-plate or the more significant amount of its material length to its thickness ( l / h ) , the influence of 57 

size effect increases. Using the method presented by Tsiatas, Yin et al. [46] introduced the non-classic model of Kirchhoff’s 58 

plate to investigate the effect of size on the first two natural frequencies of micro-plates based on modified couple stress 59 

theory. Also, Jomehzadeh et al. [47] using the model provided by Tsiatas, analytically investigated the effect of size on the 60 

natural frequency of thin simply supported micro-plates based on modified couple stress theory and Kirchhoff assumptions. 61 

They also examined circular plates with different boundary conditions. They showed that by decreasing the thickness of the 62 

micro-plates, the value of natural frequency significantly increased. Then Asghari [48] expanded Tsiatas’s work by consid- 63 

ering non-linear geometric effects in equations. He also presented the size-dependent model for thin plates by recognizing 64 

nonlinear geometric effects based on the modified couple stress theory. Wang et al. [49] presented a non-classical model 65 

for Kirchhoff plates based on the principle of minimum potential energy to analyze nonlinear bending micro-circular plates 66 

under a uniform load. The governing equations first were converted to nonlinear algebraic equations using Collocation point 67 

method, and then these equations were solved using the Newton- Raphson numerical method. Numerical results showed the 68 

plate that is modeled using MCST is stiffer than the plate is modeled using classical theory, so the lower ratio of thickness 69 
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Fig. 1. Schematic figure of a rectangular micro-plate. 

to the material length scale parameter, the difference between two theories gets bigger. Akgoz and Civalek [50] investi- 70 

gated an analytical solution for static bending, and free vibration of micro-plates rested on an elastic foundation based on 71 

modified couple stress theory. Equations were derived based on the Kirchhoff plate theory, and for solving equations, the 72 

Navier’s method was used. Askari and Tahani [51] extracted the size-dependent natural frequency of thin-rectangular micro- 73 

plate with clamped boundary condition based on the modified couple stress theory using the extended Kantorovich method 74 

(EKM). They also [52] investigated the size effects on the natural frequencies in thin clamped micro-plates under the elec- 75 

trostatic field. They concluded that accounting the size effects in the free vibration analysis of pre-deformed micro-plate, 76 

under applying the electrical potential is more urgent than one with un-deformed structure. Tahani et al. [53] investigated 77 

the effects of length scale on natural frequencies and linear and un-damped mode shapes of thin rectangular micro-plates. 78 

The micro-plate has initial deflection under the presence of an electrostatic field. They used the finite element method to 79 

solve equations and showed that the convergence of results is gained by using a 20 × 20 grid of points. They concluded that 80 

the influence of the size effect on the natural frequencies of the pre-deformed plates when h > 20 l (thickness ratio to a 81 

material length scale) is negligible, while considering the size effect is essential for h < 10 l. Zhang et al. [54] presented the 82 

size-dependent finite element model for thick Mindlin micro-plates using modified couple stress theory. They studied static 83 

bending, buckling, and free vibration of thick micro-plates using the finite element model. It should be noted that all the 84 

mentioned papers have been examined for homogeneous micro-plates. Recently, the modified couple stress theory is used 85 

to analyze the functionally graded micro-plate. A literature survey on these topics has been carried out in [55–59] . 86 

Due to the review carried out in previous studies in the field of the micro-plates, the main objective of this work is study 87 

on the nonlinear forced vibration and dynamic behavior of rectangular micro-plates under electrical excitation. To fill this 88 

gap, the present study adopts MCST components together with developing a semi-analytical method which is appropriate 89 

for studying the micro-plate’s forced vibration. The applied excitation is made up of a constant current voltage DC and a 90 

variable AC voltage. In this analysis, the first step is to achieve the equations of motion under the electrical excitation and 91 

to simplify them. Then, to obtain the static response of the system under constant voltage (DC voltage), these equations are 92 

solved by different methods. By identifying the critical voltage and applying electrical excitation consisting of constant and 93 

alternating current voltages, the frequency response curves for the primary and secondary resonance modes are investigated. 94 

Other objectives of this study are to study the effects of electrical load parameters, (namely DC and AC driving voltages), and 95 

the influence of excitation frequency on the static and vibrational behavior of the micro-plate. In this regard, semi-analytical 96 

relations for static and vibration responses of the micro-plate under electrical stimulation are obtained, and critical voltage 97 

and the dynamic stability of the system are reported. 98 

2. Size-dependent micro-plate model 99 

The classical plate theory (CPT) is applied to plates whose thickness is small compared to other dimensions, where the 100 

transverse shear deformation, rotation inertia, and normal transverse stress can be neglected [60] . Fig. 1 demonstrates a 101 

schematic figure of a micro-plate, constructed of two conductive electrodes (one movable and one fixed (grounded)). The 102 

considered micro-plate has the length and width of a and b in the X and Y directions, while its thickness is h . The initial gap 103 

between the non-actuated micro-plate and the fixed substrate is assumed to be g . In addition, X, Y , and Z are the coordinates 104 

along the length, width, and thickness, respectively. 105 

According to the underlying hypothesis of the classical thin micro-plate theory, the displacement field ( U 1 , V 1 , W 1 ) of an 106 

arbitrary point of the micro-plate can be specified as [61] : 107 

U 1 ( X, Y, Z, t ) = U ( X, Y, t ) − Z 
∂ 

∂X 

W ( X, Y, t ) , 

V 1 ( X, Y, Z, t ) = V ( X, Y, t ) − Z 
∂ 

∂Y 
W ( X, Y, t ) , 

W 1 ( X, Y, Z, t ) = W ( X, Y, t ) (1) 
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where ( U 1 , V 1 , W 1 ) are the corresponding displacements along with the ( X, Y, Z ) coordinates. In Eq. (1) , U, V , and W repre- 108 

sent the mid-plane displacements along the coordinate directions. 109 

Since the thickness of the micro-plate compared to other dimensions is assumed to be small, the classical plate theory is 110 

adopted in this research. The nonlinear analysis of the plates is of great importance when the amplitude of lateral vibration 111 

of the micro-plate is greater than the half of the thickness of the micro-plate, and therefore an essential nonlinear term 112 

should be considered in the governing equation. Due to the presence of a nonlinear geometric term, resonance frequencies 113 

and the mode shapes are dependent on the amplitude of lateral load. von Kármán equations which incorporate the effect 114 

of mid-plane stretch are widely used in the free and forced nonlinear vibration of plates [62] . Since later deformation is 115 

comparable to the thickness of micro-plates, classical plate theory is applied for a geometrically-nonlinear problem. For 116 

micro-plates with insignificant strains, moderate slopes, and large deflections, the non-zero strain components associated 117 

with the displacement field, based on the von Kármán equation, can be written as [61, 63, 64] : 118 

ε ZZ = ε XZ = ε Y Z = 0 , { 

ε XX 

ε Y Y 
γXY 

} 

= 

⎧ ⎨ 

⎩ 

ε 0 XX 

ε 0 Y Y 

γ 0 
XY 

⎫ ⎬ 

⎭ 

− Z 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∂ 2 W 

∂ X 2 

∂ 2 W 

∂ Y 2 

2 

∂ 2 W 

∂ X∂ Y 

⎫ ⎪ ⎬ 

⎪ ⎭ 

, 

⎧ ⎪ ⎨ 

⎪ ⎩ 

ε XX 
( 0 ) 

( 0 ) 
ε Y Y 

γ (0) 
XY 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∂U 
∂X 

+ 

1 
2 

(
∂W 

∂X 

)2 

∂V 
∂Y 

+ 

1 
2 

(
∂W 

∂Y 

)2 

∂U 
∂Y 

+ 

∂V 
∂X 

+ 

∂W 

∂X 
∂W 

∂Y 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(2) 

The non-zero components of the rotation vector and curvature tensor, associated with the displacement field presented 119 

in Eq. (1) , can also be written as: 120 ⎧ ⎨ 

⎩ 

θXX 

θY Y 

θZZ 

⎫ ⎬ 

⎭ 

= 

1 

2 

Curl 

⎧ ⎨ 

⎩ 

U 1 

V 1 

W 1 

⎫ ⎬ 

⎭ 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 
2 

(
∂ W 1 

∂Y 
− ∂ V 1 

∂Z 

)
1 
2 

(
∂ U 1 
∂Z 

− ∂ W 1 

∂X 

)
1 
2 

(
∂ V 1 
∂X 

− ∂ U 1 
∂Y 

)
⎫ ⎪ ⎬ 

⎪ ⎭ 

, (3) 

121 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

χXX 

χY Y 

χXY 

χXZ 

χY Z 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ 2 W 

∂ X∂ y 

− ∂ 2 W 

∂ X∂ Y 

− 1 
2 

(
∂ 2 W 

∂ X 2 
− ∂ 2 W 

∂ Y 2 

)
− 1 

4 

(
∂ 2 U 
∂ X∂ Y 

− ∂ 2 V 
∂ X 2 

)
− 1 

4 

(
∂ 2 U 
∂ Y 2 

− ∂ 2 V 
∂ X∂ Y 

)

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

, (4) 

A brief review on the Modified Couple Stress Theory (MCST) is given in Appendix A . According to Kirchhoff’s hypothesis, 122 

the substitution of Eq. (2) into Eq. (A.2) results in the following stress components as functions of displacements: 123 

{ 

σXX 

σY Y 

σXY 

} 

= 

E 

1 − υ2 

[ 

1 υ 0 

υ 1 0 

0 0 ( 1 − υ) / 2 

] 

⎛ 

⎜ ⎝ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∂U 
∂X 

+ 

1 
2 

(
∂W 

∂X 

)2 

∂V 
∂Y 

+ 

1 
2 

(
∂W 

∂Y 

)2 

∂U 
∂Y 

+ 

∂V 
∂X 

+ 

∂W 

∂X 
∂W 

∂Y 

⎫ ⎪ ⎬ 

⎪ ⎭ 

− Z 

⎧ ⎨ 

⎩ 

W ,XX 

W ,Y Y 

2 W ,XY 

⎫ ⎬ 

⎭ 

⎞ 

⎟ ⎠ 

(5) 

where comma stands for the partial derivative, so the subscripts ′ i = (X, Y, XX, XY, Y Y ) ′ denote respec- 124 

tively ( ∂ 
∂X 

, ∂ 
∂Y 

, ∂ 2 

∂ X 2 
, ∂ 2 

∂ X∂ Y 
, ∂ 2 

∂ Y 2 
) . Inserting Eq. (4) into Eq. (A.4) leads the following relation between the deviatoric part 125 

of the couple stress and the displacements of the mid-plane. 126 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

m XX 

m Y Y 

m XY 

m XZ 

m Y Z 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

E l 2 

1 + υ

⎡ 

⎢ ⎢ ⎢ ⎣ 

1 0 0 0 0 

0 1 0 0 0 

0 0 

1 
2 

0 0 

0 0 0 

1 
4 

0 

0 0 0 0 

1 
4 

⎤ 

⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ 2 W 

∂ X∂ Y 

− ∂ 2 W 

∂ X∂ Y 

∂ 2 W 

∂ Y 2 
− ∂ 2 W 

∂ X 2 

∂ 2 V 
∂ X 2 

− ∂ 2 U 
∂ X∂ Y 

∂ 2 V 
∂ X∂ Y 

− ∂ 2 U 
∂ Y 2 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(6) 

The governing equations of motion and associated boundary conditions for the micro-plate can be derived by using 127 

Hamilton’s principle (See Appendix B ). Upon substitution of Eqs. (B.11a)–(B.11c) into Eqs. (B.9a)–(B.9c), the governing equa- 128 

tions of motion can be obtained: 129 

∂ 2 U 

∂ X 

2 
+ 

1 

2 

( 1 + υ) 

(
∂ 2 V 

∂ X ∂ Y 
+ 

∂W 

∂Y 

∂ 2 W 

∂ X ∂ Y 

)
+ 

1 

2 

( 1 − υ) 

(
∂ 2 U 

∂ Y 2 
+ 

∂W 

∂X 

∂ 2 W 

∂ Y 2 

)

+ 

∂W 

∂X 

∂ 2 W 

∂ X 

2 
+ 

l 2 ( 1 − υ) 

8 

∇ 

2 

(
∂ 2 V 

∂ X ∂ Y 
− ∂ 2 U 

∂ Y 2 

)
= 

1 − υ2 

Eh 

I 0 
∂ 2 U 

∂ t 2 
, (7) 
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130 

∂ 2 V 

∂ Y 2 
+ 

1 

2 

( 1 + υ) 

(
∂ 2 U 

∂ X ∂ Y 
+ 

∂W 

∂X 

∂ 2 W 

∂ X ∂ Y 

)
+ 

1 

2 

( 1 − υ) 

(
∂ 2 V 

∂ X 

2 
+ 

∂W 

∂Y 

∂ 2 W 

∂ X 

2 

)

+ 

∂W 

∂Y 

∂ 2 W 

∂ Y 2 
+ 

l 2 ( 1 − υ) 

8 

∇ 

2 

(
∂ 2 U 

∂ X ∂ Y 
− ∂ 2 V 

∂ X 

2 

)
= 

1 − υ2 

Eh 

I 0 
∂ 2 V 

∂ t 2 
, (7b) 

131 ( 

μh l 2 + 

E h 

3 

12 

(
1 − υ2 

)
) 

∇ 

4 W + I 0 
∂ 2 W 

∂ t 2 
= I 2 

∂ 2 

∂ t 2 

(∇ 

2 W 

)
+ Y XX 

∂ 2 W 

∂ X 

2 

+ 2 Y XY 
∂ 2 W 

∂ X ∂ Y 
+ Y Y Y 

∂ 2 W 

∂ Y 2 
+ N 

r 
XX 

∂ 2 W 

∂ X 

2 
+ N 

r 
Y Y 

∂ 2 W 

∂ Y 2 
+ 

ε 0 V (t) 
2 

2 ( g − W ) 
2 

− Eh l 2 

8 ( 1 + υ) 

(
∇ 

2 

(
∂ 2 V 

∂ X ∂ Y 
− ∂ 2 U 

∂ Y 2 

)
∂W 

∂X 

+ ∇ 

2 

(
∂ 2 U 

∂ X ∂ Y 
− ∂ 2 V 

∂ X 

2 

)
∂W 

∂Y 

)
(7c) 

Eqs. (7a)–( 7c ) are the non-homogeneous form of the dynamic equations of micro-plate by the combined applied voltages 132 

AC and DC. Where the operators ∇ 

2 and ∇ 

4 in two-dimensional space can be stated as: 133 

∇ 

2 = 

(
∂ 2 

∂ X 

2 
+ 

∂ 2 

∂ Y 2 

)
, (8) 

134 

∇ 

4 = ∇ 

2 ∇ 

2 = 

(
∂ 4 

∂ X 

4 
+ 2 

∂ 4 

∂ X 

2 ∂ y 2 
+ 

∂ 4 

∂ Y 4 

)
(9) 

Also, the MEM plates are often slender, i.e., b > 100 h , so the in-plane oscillations in comparison to the transverse vibration 135 

are quite small and insignificant. Also, it is easy to ignore the in-plane accelerations against the transverse plate accelera- 136 

tion [4,65] . Furthermore, in these structures, the transverse rotational acceleration can be neglected against its transmitted 137 

acceleration [65] . So, the inertia terms I 0 
∂ 2 U 
∂ t 2 

and I 0 
∂ 2 V 
∂ t 2 

in Eq . (7a) and ( b ) can be neglected. Furthermore, because of the 138 

slenderness of micro-plate, the rotary inertia term I 2 
∂ 2 

∂ t 2 
( ∇ 

2 W ) is also insignificant in comparison to the translatory one (i.e., 139 

I 0 
∂ 2 W 

∂ t 2 
) and can be ignored too [52] . It should be noted that the limitations of classical plate theory are depends on three 140 

different factors: the curvatures should be small, the in-plane plate dimensions should be large compared to the thickness 141 

and membrane strains can be neglected. So Eqs. (B.9a)–(B.9c) can be rewritten as follows: 142 

∂ 

∂X 

Y XX + 

∂ 

∂Y 
Y XY + 

1 

2 

(
∂ 2 

∂ X ∂ Y 
	XZ + 

∂ 2 

∂ Y 2 
	Y Z 

)
= 0 , (10) 

143 

∂ 

∂X 

Y XY + 

∂ 

∂Y 
Y Y Y − 1 

2 

(
∂ 2 

∂ X 

2 
	XZ + 

∂ 2 

∂ X ∂ Y 
	Y Z 

)
= 0 , (10b) 

144 

∂ 2 
XX 

∂ X 

2 
+ 2 

∂ 2 
XY 

∂ X ∂ Y 
+ 

∂ 2 
Y Y 

∂ Y 2 
+ Y XX 

∂ 2 W 

∂ X 

2 
+ 2 Y XY 

∂ 2 W 

∂ X ∂ Y 
+ Y Y Y 

∂ 2 W 

∂ Y 2 

+ 

∂ Y XX 

∂X 

∂W 

∂X 

+ 

∂ Y XY 

∂X 

∂W 

∂Y 
+ 

∂ Y XY 

∂Y 

∂W 

∂X 

+ 

∂ Y Y Y 

∂Y 

∂W 

∂Y 
+ N 

r 
XX 

∂ 2 W 

∂ X 

2 
+ N 

r 
Y Y 

∂ 2 W 

∂ Y 2 

+ 

∂ 2 

∂ X 

2 
	XY − ∂ 2 

∂ Y 2 
	XY + 

∂ 2 

∂ X ∂ Y 
	Y Y − ∂ 2 

∂ X ∂ Y 
	XX + 

ε 0 V (t) 
2 

2 ( g − W ) 
2 

= I 0 Ẅ (10c) 

By introducing the stress functions as follow, Eq. (10a) and ( b ) are automatically satisfied. 145 

Y XX = φ,Y Y , Y Y Y = φ,XX , Y XY = −φ,XY , 	XZ = φ,Y , 	Y Z = −φ,X (11) 

So, Eq. (10c) is converted as follows: 146 

∂ 2 

∂ X 

2 

XX + 2 

∂ 2 

∂ X ∂ Y 

XY + 

∂ 2 

∂ Y 2 

Y Y + φ,Y Y 

∂ 2 W 

∂ X 

2 
− 2 φ,XY 

∂ 2 W 

∂ X ∂ Y 
+ φ,XX 

∂ 2 W 

∂ Y 2 

+ 

∂ ( φ,Y Y ) 

∂X 

∂W 

∂X 

− ∂ ( φ,XY ) 

∂X 

∂W 

∂Y 
− ∂ ( φ,XY ) 

∂Y 

∂W 

∂X 

+ 

∂ ( φ,XX ) 

∂Y 

∂W 

∂Y 
+ N 

r 
XX 

∂ 2 W 

∂ X 

2 

+ N 

r 
Y Y 

∂ 2 W 

∂ Y 2 
+ 

∂ 2 

∂ X 

2 
	XY − ∂ 2 

∂ Y 2 
	XY + 

∂ 2 	Y Y 

∂ X ∂ Y 
− ∂ 2 	XX 

∂ X ∂ Y 
+ 

ε 0 V (t) 
2 

2 ( g − W ) 
2 

= I 0 Ẅ (12) 
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By replacing 
i , 	i i = XX, Y Y, XY from the relations (B.11a) and (B.11b), the following equation is obtained: 147 

∂ 2 

∂ X 

2 

( 

−E h 

3 

12 

(
1 − υ2 

) ∂ 2 W 

∂ X 

2 
+ 

−E h 

3 υ

12 

(
1 − υ2 

) ∂ 2 W 

∂ Y 2 

) 

+ 2 

∂ 2 

∂ X ∂ Y 

(
−E h 

3 

12 ( 1 + υ) 

∂ 2 W 

∂ Y ∂ X 

)

+ 

∂ 2 

∂ Y 2 

( 

−E h 

3 

12 

(
1 − υ2 

) ∂ 2 W 

∂ Y 2 
+ 

−E h 

3 υ

12 

(
1 − υ2 

) ∂ 2 W 

∂ X 

2 

) 

+ φ,Y Y 
∂ 2 

∂ X 

2 
W − 2 φ,XY 

∂ 2 W 

∂ X ∂ Y 

+ φ,XX 
∂ 2 

∂ Y 2 
W + 

∂ ( φ,Y Y ) 

∂X 

∂W 

∂X 

− ∂ ( φ,XY ) 

∂X 

∂W 

∂Y 
− ∂ ( φ,XY ) 

∂Y 

∂W 

∂X 

+ 

∂ ( φ,XX ) 

∂Y 

∂W 

∂Y 

+ N 

r 
XX 

∂ 2 W 

∂ X 

2 
+ N 

r 
Y Y 

∂ 2 W 

∂ Y 2 
− 1 

2 

Eh l 2 

1 + υ

∂ 2 

∂ X 

2 

(
∂ 2 W 

∂ X 

2 
− ∂ 2 W 

∂ Y 2 

)

+ 

1 

2 

Eh l 2 

1 + υ

∂ 2 

∂ Y 2 

(
∂ 2 W 

∂ X 

2 
− ∂ 2 W 

∂ Y 2 

)
− Eh l 2 

1 + υ

∂ 2 

∂ X ∂ Y 

(
∂ 2 

∂ X ∂ Y 
W 

)

− Eh l 2 

1 + υ

∂ 2 

∂ X ∂ Y 

(
∂ 2 

∂ X ∂ Y 
W 

)
+ 

ε 0 V (t) 
2 

2 ( g − W ) 
2 

= I 0 Ẅ (13) 

By removing U and V from Eq. (2) , the compatibility equation is obtained as follows: 148 

∂ 2 
(0) 
ε XX 

∂ Y 2 
+ 

∂ 2 
(0) 
ε Y Y 

∂ X 

2 
− ∂ 2 

(0) 
ε XY 

∂ X ∂ Y 
= 

(
∂ 2 W 

∂ X ∂ Y 

)2 

− ∂ 2 W 

∂ X 

2 

∂ 2 W 

∂ Y 2 
(14) 

By solving Eqs. (B.11a) and (B.11c) for ε 0 
k 
, k = XX, Y Y, XY and replacing Eq. (11) , the following relations are obtained: 149 

(0) 
ε XX = 

1 

Eh 

( φ,Y Y − υφ,XX ) , (15) 

150 
(0) 
ε Y Y = 

1 

Eh 

( −νφ,Y Y + φ,XX ) , (15b) 

151 
(0) 
ε XY = −2 

1 + υ

Eh 

φ,XY (15c) 

Replacing the relationships (15a) –( c ) in Eq. (14) and assume that φ is replaced by φ = hF , in which F is the Airy stress 152 

function, the following equations are obtained: 153 

∇ 

4 F = E 
(
W 

2 
,XY − W ,XX W ,Y Y 

)
(16) 

By simplifying Eq. (13), Eq. (17) is obtained as follows: 154 


( W, F ) ≡ h 

(
F ,Y Y 

∂ 2 

∂ X 

2 
W − 2 F ,XY 

∂ 2 

∂ X ∂ Y 
W + F ,XX 

∂ 2 

∂ Y 2 
W 

)
+ N 

r 
XX 

∂ 2 W 

∂ X 

2 

+ N 

r 
Y Y 

∂ 2 W 

∂ Y 2 
+ q − I 0 Ẅ −

(∇ 

4 W 

)
D eq = 0 & D eq = 

( 

1 

2 

Eh l 2 

1 + υ
+ 

E h 

3 

12 

(
1 − υ2 

)
) 

, 

q (X, Y ) = 

ε 0 V (t) 
2 

2 ( g − W ( X, Y ) ) 
2 

(17) 

Eqs. (16) and (17) are governing equations of micro-plate regarding W and F . 155 

The associated out-of-plane boundary conditions for clamped micro-plate with immovable edges have the form as: 156 

W = W ,X = 0 at X = ± a 

2 

W = W ,Y = 0 at Y = ± b 

2 

(18) 

The in-plane conditions for clamped boundary condition are considered as (All edges immovably constrained): 157 

U = F ,XY = 0 at X = ± a 

2 

V = F ,XY = 0 at Y = ± b 

2 

(18b) 

Since the effect of shear deformation on the resonance frequencies of thin micro plates is not negligible, one may suspect 158 

that there are other thin-plate geometries where in-plane motion is important. So, in this condition resonant frequencies 159 
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predicted by classical plate theory would be agree well with those measured by first shear deformation theory or higher 160 

plate theories. According to what is commonly stated in the literature, when in-plane motion is restricted one can assume 161 

that classical plate theory is applicable simply because the plate is thin [66] . 162 

Eqs. (16) and (17) should be solved in conjunction with boundary conditions (18a, 18b). 163 

3. Solution procedure 164 

Approximate methods for rectangular and circular plates with different boundary conditions were obtained by Yamaki 165 

[67] . Kung and Pao [68] used the combination of the Galerkin method and the Harmonic Balance Method (HBM) to analyze 166 

the vibration of buckled rectangular plates. Using the method of multiple scales, Hadian and Nayfeh [69] studied the re- 167 

sponse of circular plates under intermittent external stimulation. Shi and Mei [70] studied large amplitude free vibration of 168 

plates using the Reduced Order method (ROM). A large number of researchers have used the combination of finite element 169 

method and Harmonic Balance method to study the nonlinear geometric vibration of thin isotropic plates. The dynamical 170 

behavior of the plates for large-amplitude vibrations by theoretical and laboratory methods has been investigated by Be- 171 

namar et al. [71] . For further study on the nonlinear behavior of plates, one can refer to nonlinear vibration and stability 172 

books of shells and plates [72] , nonlinear vibrations, nonlinear analysis of plates [73] , and linear and nonlinear mechanical 173 

mechanisms [30] . 174 

3.1. Static case 175 

Because of the limitation in applying an electrical voltage to the system, the study of static behavior of micro-plate is 176 

essential to identify the maximum DC voltage and prevent the static instability of the system. For studying static behavior, 177 

a solution is assumed in the form of a generalized double Fourier series for the static case, i.e., I 0 Ẅ = 0 [74] . 178 

W = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

W mn x m 

(X ) y n (Y ) , F = 

∞ ∑ 

p=1 

∞ ∑ 

q =1 

F pq x p (X ) y q (Y ) (19) 

where W mn and F pq are constant coefficients to be determined and x m 

, x p are beam Eigen functions given by: 179 

x m 

= 

cosh αm 

X 

cosh αm 

a 
2 

− cos αm 

X 

cos αm 

a 
2 

, y n = 

cosh βn Y 

cosh βn 
b 
2 

− cos βn Y 

cos βn 
b 
2 

(20) 

All the boundary conditions (18) are satisfied if the values of αm 

and βn be the roots of the transcendental equation: 180 

tanh λm 

+ tan λm 

= 0 (21) 

Where 181 

λm 

= αm 

a 

2 

or βn 
b 

2 

(22) 

The roots of Eq. (21) are obtained simplicity. The functions x m 

(X ) and y n (Y ) satisfy the following orthogonality relations: 182 ∫ a 
2 

− a 
2 

x i x j dX = 

{
0 i � = j 
a i = j 

, 

∫ b 
2 

− b 
2 

y i y j dY = 

{
0 i � = j 
b i = j 

(23) 

The transverse load q (X, Y ) is expanded into a double series: 183 

q (X, Y ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

q mn x m 

(X ) y n (Y ) (24) 

Where 184 

q mn = 

1 

ab 

∫ a 
2 

− a 
2 

∫ b 
2 

− b 
2 

q (X, Y ) x m 

(X ) y n (Y ) dX dY (25) 

Substituting Eqs. (19) and (24) into Eqs. (17) and (16) leads to: 185 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

W mn 

(
(α4 

m 

+ β4 
n ) x m 

y n + 2 x ′′ m 

y ′′ n 
)

= 

1 

D eq ( 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

q mn x m 

y n + h 

∞ ∑ 

p=1 

∞ ∑ 

q =1 

∞ ∑ 

r=1 

∞ ∑ 

s =1 

W pq F rs 

(
x r x 

′′ 
p y q y 

′′ 
s + x p x 

′′ 
r y s y 

′′ 
q − 2 x ′ p x ′ r y ′ q y ′ s 

)

+ N 

r 
XX 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

W mn α
2 
m 

x m 

y n + N 

r 
Y Y 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

W mn β
2 
n x m 

y n 

) 

(26) 
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186 

∞ ∑ 

p=1 

∞ ∑ 

q =1 

F pq 

(
(α4 

p + β4 
q ) x p y q + 2 x ′′ p y ′′ q 

)

= E 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

∞ ∑ 

r=1 

∞ ∑ 

s =1 

W mn W rs 

(
x ′ m 

x ′ r y ′ n y ′ s − x r x 
′′ 

m 

y n y 
′′ 

s 

)
(27) 

in which primes denote differential with respect to the corresponding coordinates. Multiplying each of Eqs. (26) and (27) by 187 

x i (X ) × y j (Y ) , integrating with respect to X and Y over their respective intervals, and using Eqs. (22) and (23) leads to a 188 

system of nonlinear algebraic equations. 189 

W i j ( 
b 2 

a 2 
λ4 

i + 

a 2 

b 2 
λ4 

j ) + 2 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

W mn λ
2 
m 

λ2 
n K 

im 

1 K 

jn 
1 

= 

a 2 b 2 q i j 

16 D eq 
+ 

h 

D eq 

×
∞ ∑ 

p=1 

∞ ∑ 

q =1 

∞ ∑ 

r=1 

∞ ∑ 

s =1 

W pq F rs . 
(
λ2 

p λ
2 
s K 

irp 
2 

L jqs 
2 

+ λ2 
q λ

2 
r K 

ipr 
2 

L jsq 
2 

− 2 λp λq λr λs K 

ipr 
3 

L jqs 
3 

)
, 

i, j = 1 , 2 , 3 , . . . (28) 

190 

F i j ( 
b 2 

a 2 
λ4 

i + 

a 2 

b 2 
λ4 

j ) + 2 

∞ ∑ 

p=1 

∞ ∑ 

q =1 

F pq λ
2 
p λ

2 
q K 

ip 
1 

K 

jq 
1 

= E 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

∞ ∑ 

r=1 

∞ ∑ 

s =1 

W mn W rs . ( λm 

λn λr λs K 

imr 
3 L jns 

3 
− λ2 

m 

λ2 
s K 

irm 

2 L jns 
2 

) , i, j = 1 , 2 , 3 , . . . (29) 

where 191 

K 

im 

1 = 

1 

aα2 
m 

∫ a 
2 

− a 
2 

x i x 
′′ 

m 

dX , L jn 
1 

= 

1 

bβ2 
n 

∫ b 
2 

− b 
2 

y j y 
′′ 

n dY , K 

irp 
2 

= 

1 

aα2 
p 

∫ a 
2 

− a 
2 

x i x r x 
′′ 

p dX , 

L jqs 
2 

= 

1 

bβ2 
s 

∫ b 
2 

− b 
2 

y j y q y 
′′ 

s dY , K 

ipr 
3 

= 

1 

a αp αr 

∫ a 
2 

− a 
2 

x i x 
′ 
p x 

′ 
r dX , L jqs 

3 
= 

1 

b βq βs 

∫ b 
2 

− b 
2 

y j y 
′ 
q y 

′ 
s dY (30) 

Let q ( X, Y ) be load P uniformly distributed over a portion of the plate surface. The load coefficients introduced in Eq. (25) be- 192 

come: 193 

q mn = 

P 

αβλm 

λn 
( sinh λm 

− sin λm 

) ( sinh λn − sin λn ) (31) 

By substituting Eq. (31) into Eq. (28) , the deflection vector and stress resultants can be calculated. With these values of q mn , 194 

the geometrically nonlinear behavior of a rectangular micro-plate under a uniformly distributed load ( P) can be investigated 195 

by the previous series solution. Similarly, the solution can be applied to other types of transverse loading. 196 

3.1.1. Galerkin’s method for clamped micro-plate 197 

The large deflection of a rectangular clamped micro-plate under distributed load q ( X, Y ) is reconsidered by making use 198 

of the one-term approximation of the Galerkin method [75] . The equilibrium Eq. (17) and compatibility relation (16) and 199 

boundary conditions (38) remain unchanged. The transverse deflection is assumed to be of the form Yeh and Liu [76] 200 

W = g W m 

cos 2 
(
πX 

a 

)
cos 2 

(
πY 

b 

)
(32) 

in which W m 

, is the non-dimensional maximum deflection at the plate center given by W 0 / g , and W 0 denotes the central de- 201 

flection. This approximated deflection obviously satisfies the geometrical boundary conditions in Eq. (18) . Upon substitution 202 

Eq. (16) may be expressed as: 203 

∇ 

4 F = −π4 E g 2 W 

2 
m 

a 2 b 2 

∞ ∑ 

p=0 

∞ ∑ 

q =0 

a pq R p (X ) S q (Y ) (33) 

Where 204 

R p (X ) = cos 
2 pπX 

a 
, S q (Y ) = cos 

2 qπY 

b 
, a 01 = a 10 = a 02 = a 20 = a 12 = 

a 21 = 

1 

2 

, a 11 = 1 and all other a pq = 0 (34) 
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The general solution of Eq. (33) is the sum of the complementary function F c and a particular integral F p , i.e., F = F c + F p . 205 

A particular solution of Eq. (33) may be expressed as: 206 

F p = E g 2 W 

2 
m 

∞ ∑ 

p=0 

∞ ∑ 

q =0 

b pq R p (X ) S q (Y ) & b pq = − ψ 

2 a pq 

16 ( p 2 + ψ 

2 q 2 ) 
2 

, ψ = 

a 

b 
(35) 

It is easily seen that F p given by expression (35) is an even function of X and Y with the vanishing shear stresses along the 207 

boundaries. With the same properties, the complementary function may be expressed in the form: 208 

F c = 

W 

2 
m 

2 

( C 1 X 

2 + C 2 Y 
2 ) + E g 2 W 

2 
m 

∞ ∑ 

n =1 

{
A n 

n 

2 [ sinh (nπ/ψ) cosh (nπ/ψ) + nπ/ψ ] [ (
sinh 

nπ

ψ 

+ 

nπ

ψ 

cosh 

nπ

ψ 

)
cosh 

2 nπ

a 
Y − 2 nπ

a 
Y sinh 

nπ

ψ 

sinh 

2 nπ

a 
Y 

] 
cos 

2 nπX 

a 

+ 

B n 

n 

2 ψ 

2 [ sinh nπψ cosh nπψ + nπψ ] 
[ ( sinh nπψ + nπψ cosh nπψ) cosh 

2 nπX 

b 

−2 nπ

b 
X sinh nπψ sinh 

2 nπ

b 
X 

] 
cos 

2 nπ

b 
Y 

} 

(36) 

In which C 1 , C 2 , A n , and B n , are arbitrary constants. (See Appendix C , for more information). For convenience, the comple- 209 

mentary function F c is also represented by a double cosine series. 210 

F c = E g 2 W 

2 
m 

∞ ∑ 

p=0 

∞ ∑ 

q =0 

c pq R p (X ) S q (Y ) (37) 

The Fourier coefficients c mn in the series are given by: 211 

c mn = 

4 ψ 

π( m 

2 + ψ 

2 n 

2 ) 
2 

×
(

m (−1) 
n ς n sinh 

2 
(mπ/ψ) A m 

(mπ/ψ) + sinh (mπ/ψ) cosh (mπ/ψ) 
+ 

n (−1) 
m ς m 

sinh 

2 
nπψ B n 

nπψ + sinh nπψ cosh nπψ 

)
m, n = 0 , 1 , 2 , . . . (38) 

where 212 

ς 0 = 

1 

2 

, ς 1 = ς 2 = · · · = 1 (39) 

By substitution ( F = F c + F p ) yields: 213 

F = E g 2 W 

2 
m 

∞ ∑ 

p=0 

∞ ∑ 

q =0 

( b pq + c pq ) R p (X ) S q (Y ) (40) 

Function (32) for W and Function (36) for F satisfy all the boundary conditions (18) as well as the compatibility condition 214 

(16) . With these expressions, however, the equilibrium Eq. (16) generally cannot be precisely satisfied. Instead of satisfaction 215 

of this equation, we apply the Galerkin method to minimize the error function which is obtained by inserting Eqs. (32) and 216 

(40) into (16) , i.e., 217 ∫ ∫ 
A 


( W, F ) W dX dY = 0 (41) 

3.2. Vibrational of micro-plate due to the harmonic electrical force 218 

The in-plane displacements U and V are related to the stress function ( F ) by the following equation: 219 

U = 

∫ X 

0 

(
( F ,Y Y − υF ,XX ) 

E 
− 1 

2 

( W ,X ) 
2 
)

dX & V = 

∫ Y 

0 

(
( F ,XX − υF ,Y Y ) 

E 
− 1 

2 

( W ,Y ) 
2 
)

dY (42) 

A one-term approximate solution of the governing Eqs. (16) and (17) satisfying the prescribed boundary conditions in 220 

each case which formulated by application of the Galerkin method. The conditions (18a) are satisfied by assuming the 221 

deflection function as [77] : 222 

W = gR (t) cos 2 
(
πX 

a 

)
cos 2 

(
πY 

b 

)
(43) 

in which R (t) is a function of time ( t) with its maximum value being: 223 

R max (t) = 

W m 

g 
(44) 
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In this expression W m 

, is the maximum deflection of the plate. Substituting expressions (43) into the compatibility 224 

Eq. (16) yields: 225 

∇ 

4 F = 

π4 E g 2 R 

2 

a 2 b 2 

∞ ∑ 

p=0 

∞ ∑ 

q =0 

a pq cos 
2 pπX 

a 
cos 

2 qπY 

b 
(45) 

in which a pq are known Fourier coefficients. The general solution of Eq. (45) is F = F c + F p , where F c is the complementary 226 

function and F p is a particular solution which may be expressed as: 227 

F p = E g 2 R 

2 
∞ ∑ 

p=0 

∞ ∑ 

q =0 

b pq cos 
2 pπX 

a 
cos 

2 qπY 

b 
, b pq = 

ψ 

2 a pq 

16 ( p 2 + ψ 

2 q 2 ) 
2 

(46) 

After some manipulation the nonzero coefficients b pq are obtained: 228 

b 01 = − 1 

32 ψ 

2 
, b 10 = −ψ 

2 

32 

, b 11 = − ψ 

2 

16 

(
1 + ψ 

2 
)2 

, b 02 = − 1 

512 ψ 

2 
, 

b 20 = − ψ 

2 

512 

, b 12 = − ψ 

2 

32 

(
1 + 4 ψ 

2 
)2 

, b 21 = − ψ 

2 

32 

(
4 + ψ 

2 
)2 

(47) 

It is observed that F p , is an even function in X and Y satisfying the condition for zero shear stress along the edges of the 229 

plate. The constants C 1 , C 2 , A n and B n in Eq. (36) are to be determined by the in-plane boundary conditions. Inserting the 230 

expressions W and F in conditions ( 18b ), by use of Eq. (42) , for an immovable micro-plate, these constants obtained as: 231 

C 1 = 

3 

32 

π2 E g 2 
(
ψ 

2 + υ
)

a 2 
(
1 − υ2 

) , C 2 = 

3 

32 

π2 E g 2 
(
υψ 

2 + 1 

)
a 2 
(
1 − υ2 

) , A n = B n = 0 (48) 

Now the function F can be written in the general form: 232 

F = 

R 

2 

2 

(
C 1 X 

2 + C 2 Y 
2 
)

+ E g 2 R 

2 
∞ ∑ 

p=0 

∞ ∑ 

q =0 

b pq cos 
2 pπX 

a 
cos 

2 qπY 

b 
(49) 

Finally, the following equation is obtained for F : 233 

F = 

R 

2 

2 

( 

3 

32 

π2 E g 2 
(
ψ 

2 + υ
)

a 2 
(
1 − υ2 

) X 

2 + 

3 

32 

π2 E g 2 
(
υψ 

2 + 1 

)
a 2 
(
1 − υ2 

) Y 2 

) 

− E g 2 R 

2 

×
( 

1 

32 ψ 

2 
cos 

2 πY 

b 
+ 

ψ 

2 

32 

cos 
2 πX 

a 
+ 

ψ 

2 

16 

(
1 + ψ 

2 
)2 

cos 
2 πX 

a 
cos 

2 πY 

b 

+ 

1 

512 ψ 

2 
cos 

4 πY 

b 
+ 

ψ 

2 

512 

cos 
4 πX 

a 
+ 

ψ 

2 

32 

(
1 + 4 ψ 

2 
)2 

cos 
2 πX 

a 
cos 

4 πY 

b 

+ 

ψ 

2 

32 

(
4 + ψ 

2 
)2 

cos 
4 πX 

a 
cos 

2 πY 

b 

) 

(50) 

3.3. Non-dimensionalization of the governing equations 234 

It is an excellent practice to non-dimensionalize the governing equations before treating them with perturbation methods 235 

to simplify and avoid calculation errors. To this end, the non-dimensionalization parameters such as characteristic length, 236 

time and other non-dimensional variables are as follow: 237 

x = 

X 

a 
, y = 

Y 

b 
, w = 

W 

g 
, ψ = 

a 

b 
, ξ = 6 ( 1 − υ) 

(
l 

h 

)2 

, f = 

F 

E g 2 
, κ = 

g 

h 

, 

N i = x,y = 

12 a 2 
(
1 − υ2 

)
N 

r 
i 

E h 

3 
, ̂  t = 

t 

a 2 

√ 

E h 

3 

12 

(
1 − υ2 

)
ρh 

, β = 

6 

(
1 − υ2 

)
ε 0 a 

4 

E h 

3 g 3 
(51) 

Upon substitution of the dimensionless quantities given in Eq. (51) into Eqs. (16) , (17) and (50) moreover, multiplication 238 

both side Eqs. (16) and (17) by a 4 

g 
12( 1 −υ2 ) 

E h 3 
and Eq. (50) by a 4 

E g 2 
the following equations will be gained: 239 

12 ψ 

2 κ2 
(
1 − υ2 

)(
f ,yy 

∂ 2 

∂ x 2 
w − 2 f ,xy 

∂ 2 

∂ x∂ y 
w + f ,xx 

∂ 2 

∂ y 2 
w 

)
+ N x 

∂ 2 w 

∂ x 2 
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+ N y ψ 

2 ∂ 
2 w 

∂ y 2 
+ 

β V ( t ) 
2 

(1 − w ) 
2 

− ∂ 2 w 

∂ t 2 
= 

∂ 4 w 

∂ x 4 
+ 2 ψ 

2 ∂ 4 w 

∂ x 2 ∂ y 2 
+ ψ 

4 ∂ 
4 w 

∂ y 4 

+ ξ

(
∂ 4 w 

∂ x 4 
+ 2 ψ 

2 ∂ 4 w 

∂ x 2 ∂ y 2 
+ ψ 

4 ∂ 
4 w 

∂ y 4 

)
, (52) 

240 

∂ 4 f 

∂ x 4 
+ 2 ψ 

2 ∂ 4 f 

∂ x 2 ∂ y 2 
+ ψ 

4 ∂ 
4 f 

∂ y 4 
+ ψ 

2 

( 

∂ 2 w 

∂ x 2 
∂ 2 w 

∂ y 2 
−
(

∂ 2 w 

∂ x∂ y 

)2 
) 

= 0 , (53) 

241 

f = 

R 

2 π2 

2 

( 

3 

32 

(
ψ 

2 + υ
)(

1 − υ2 
) x 2 + 

3 

32 

(
υψ 

2 + 1 

)(
1 − υ2 

) y 2 

) 

− R 

2 

×
( 

1 

32 ψ 

2 
cos 2 πy + 

ψ 

2 

32 

cos 2 πx + 

ψ 

2 

16 

(
1 + ψ 

2 
)2 

cos 2 πx cos 2 πy 

+ 

1 

512 ψ 

2 
cos 4 πy + 

ψ 

2 

512 

cos 4 πx + 

ψ 

2 

32 

(
1 + 4 ψ 

2 
)2 

cos 2 πx cos 4 πy 

+ 

ψ 

2 

32 

(
4 + ψ 

2 
)2 

cos 4 πx cos 2 πy 

) 

(54) 

Eqs. (52) and (53) are equations of motion for the rectangular micro-plates under electric force in terms of w and f . In other 242 

words, Eq. (52) states the movement of the micro-plate in the Z direction and Eq. (53) is the plate compatibility equation. 243 

It can be understood that the length of the plate has a substantial effect on the static and dynamic components of the 244 

electrical force β (see Eq. (51) ). 245 

3.3.1. Non-dimensionalization of the boundary conditions 246 

The associated in-plane and out-plane dimensionless boundary conditions for micro-plate with immovable edges have 247 

the form as [52, 54] 248 

δu = 0 at x = −1 

2 

, 
1 

2 

& y = −1 

2 

, 
1 

2 

∂δu 

∂x 
= 0 at y = −1 

2 

, 
1 

2 

∂δu 

∂y 
= 0 at x = −1 

2 

, 
1 

2 

& y = −1 

2 

, 
1 

2 

δv = 0 at x = −1 

2 

, 
1 

2 

& y = −1 

2 

, 
1 

2 

∂δv 
∂x 

= 0 at x = −1 

2 

, 
1 

2 

& y = −1 

2 

, 
1 

2 

∂δv 
∂y 

= 0 at x = −1 

2 

, 
1 

2 

δw = 0 at x = −1 

2 

, 
1 

2 

& y = −1 

2 

, 
1 

2 

∂δw 

∂x 
= 0 at x = −1 

2 

, 
1 

2 

& y = −1 

2 

, 
1 

2 

∂δw 

∂y 
= 0 at x = −1 

2 

, 
1 

2 

& y = −1 

2 

, 
1 

2 

(55) 

4. Obtaining a set of ordinary differential equation 249 

The large static deflection of the plate can be treated as a special case of the nonlinear plate vibration. In the discretiza- 250 

tion methods, one postulates the solution in the form w ( x, y, t ) = 

∑ M 

m =1 φm 

( x, y ) R m 

(t) , where M is a finite integer and φm 

251 

are the generalized coordinates [62] . By replacing w = R (t) cos 2 (πx ) cos 2 (πy ) and f from Eq. (54) , into Eq. (52) , multiplying 252 

the resulting equation in cos 2 (πx ) cos 2 (πy ) and integrating from ( x, y ) = ( − 1 
2 , − 1 

2 ) to ( x, y ) = ( 1 2 , 
1 
2 ) , the following non- 253 

linear ordinary differential equation is obtained: 254 

R̈ ( t ) + A 1 R ( t ) ̈R ( t ) + A 2 R ( t ) 
2 R̈ ( t ) + A 3 R ( t ) + A 4 R ( t ) 

2 + A 5 R ( t ) 
3 + A 6 R ( t ) 

4 
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Fig. 2. Comparison between the static deflection obtained by the current method for a micro-plate. 

+ A 7 R ( t ) 
5 + A 8 = 0 (56) 

The coefficients A i , i = 1 , 2 , . . . , 8 are presented in Appendix D . 255 

5. Result and discussion 256 

The results presented in the next sections have been obtained for clamped micro-plates without in-plate motion and 257 

with the following coefficients N x = N y = 1 , υ = 0 . 33 , wherever these coefficients have not been specified. 258 

5.1. Validation 259 

To measure the accuracy of the model proposed in this research, the following results are validated with the information 260 

contained in the previously published article. Fig. 2 shows a comparison between the static deflection obtained by the 261 

current method and those obtained by Zhao using a reduced order model based on analytically obtained basis functions 262 

[29] . As it is evident, there is a good agreement. 263 

5.2. Time response and phase portrait 264 

According to the Eq. (56) and by using a change of variables, i.e., R (t) = y 1 , ˙ R (t) = y 2 , the following equations are ob- 265 

tained as: 266 

˙ y 2 = 

1 (
1 + A 1 y 1 + A 2 y 1 2 

)(−(A 3 y 1 + A 4 y 1 
2 + A 5 y 1 

3 + A 6 y 1 
4 + A 7 y 1 

5 
)
+ 

16β

9 

(
V 

2 
DC + 2 V DC V AC cos ( ω 1 t ) + 

V 

2 
AC 

2 

( 1 + cos ( ω 2 t ) ) 

))
, 

˙ y 1 = y 2 , � = ω 1 , 2� = ω 2 (57) 

One may solve the above equations using the Runge-Kutta method to obtain a time response that is shown in Fig. 3 . 267 

This response is periodic (repeats with a certain period T ) because the ratio between two frequencies is a rational number 268 

ω 2 = 2 ω 1 . If one plot the phase portrait by sampling at a time interval, it will yield a single point as shown in Fig. 3 (c). It 269 

may be noted that the actual phase portrait is shown in Fig. 3 (b). The Poincare’ section of the periodic response is shown 270 

in Fig. 3 (c). So, in this way, one can determine the Poincare’ section by sampling the time response with the minimum 271 

period. It is the method used to reduce the dimension of the system by one. Let us take another case. Here, let excited 272 

voltage, i.e., V (t) = ( V DC + V 1 
AC 

cos ( ω 1 t ) + V 2 
AC 

cos ( ω 2 t ) ) with two forcing terms having incommensurable frequencies. In this 273 

case, the ratio ω 2 = 2 
√ 

2 ω 1 is an irrational number so, the response will be quasi-periodic. The time response is shown in 274 

Fig. 4 (a). Here the system has more one period. By taking the sampling time as T (which is the minimum period), one may 275 

plot the phase portrait as shown in Fig. 4 (b). Hence, for the quasi-periodic response, the Poincare’ section is not a discrete 276 

point) Fig. 4 (c)). It may be noted that in the case of incommensurable frequencies, one obtains multiple loops in the phase 277 

portraits and discrete points in the Poincare section. 278 
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Fig. 3. Time Response, Phase portrait, and Poincare’ section, β = 0 . 1 , � = ψ = κ = 1 , V AC = 5 , V DC = 20 , ξ = 4 . . 

Fig. 4. Time Response, Phase portrait, and Poincare’ section, β = 0 . 1 , V 1 AC = V DC = 100 , ψ = κ = ξ = 1 , V 2 AC = 200 , ω 2 = 12 
√ 

2 , ω 1 = 6 . . 

5.3. Static case 279 

By solving Eq. (56) moreover, neglecting time derivatives, i.e., ( ̈R (t) = 0 ), one can plot maximum static deflection of the 280 

micro-plate at w max ( x, y ) = w ( 0 , 0 ) under electrostatic load. 281 

Fig. 5a shows the variation of the maximum deflection of the micro-plate with respect to the electrostatic voltage for 282 

different values of κ. It can be seen that in the case κ = 1 , ξ = 0 . 2 the pull-in voltage is equal to V DC | Pul l −in = 2 . 5808 . In this 283 

point ∂ w max 
∂ V DC 

| V DC (Pul l −in ) = ∞ . In other words, in the pull-in phenomenon, for a small change in voltage, there is a significant 284 

jump in the displacement response. After pull-in phenomena, the system enters the unstable state. With increasing electro- 285 

static force, the maximum deflection increases. This behavior is linear for small amounts of electrostatic force. By increasing 286 

the electrostatic force, this trend tends to highly nonlinear behavior. Also, by an increasing amount of κ , the pull-in voltage 287 

and maximum deflection will be increased. As seen in this figure, by increasing κ , the stiffness of the micro-plate increases, 288 

because, for a specific DC voltage, the maximum deflection of the micro-plate decrease. 289 

Fig. 5b shows the variation of the maximum deflection of the micro-plate with respect to the electrostatic voltage for 290 

different values of ψ . As can be seen, with increasing ψ , the critical pull-in voltage, increases. As a general result, it can be 291 

said that with increasing ψ , the stiffness of the micro-plate increases. 292 

5.3.1. A semi-analytical solution for the transient response of micro-plate 293 

The purpose of this section is to obtain a semi-analytical relationship for the static deflection of micro-plate under elec- 294 

trostatic load by the method of multiple scales. The semi-analytical relationship provides the possibility for analysis of the 295 

effects of different parameters analytically. Though the method of multiple scales is a solving method for obtaining the 296 
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Fig. 5a. Static maximum deflection obtained for a micro-plate for different values of κ . 

Fig. 5b. Variation of the maximum deflection of the micro-plate with respect to the electrostatic voltage for different values of ψ . 

dynamic response of vibrating systems, here it is used to get the static response of the system. Approximate solution of 297 

Eq. (56) as a second-order expansion in terms of the positive and small parameter ε is as follows: 298 

R ( τ0 , τ1 , τ2 , ε ) = R 0 ( τ0 , τ1 , τ2 ) + ε R 1 ( τ0 , τ1 , τ2 ) + ε 2 R 2 ( τ0 , τ1 , τ2 ) (58) 

Where in the above equation R 0 , R 1 and R 2 are three unknown functions. To obtain a second-order uniform expansion by 299 

using the method of multiple scales, we need the three-time scales τ0 , τ1 , and τ2 in which are as follow: 300 

τ0 = t, τ1 = εt, τ2 = ε 2 t (59) 

In terms of the time scales τi , i = 0 , 1 , 2 , the time derivatives become: 301 

d 

dt 
= D 0 + ε D 1 + ε 2 D 2 & 

d 2 

d t 2 
= D 

2 
0 + 2 ε D 0 D 1 + 2 ε 2 D 0 D 2 + ε 2 D 

2 
1 (60) 

in which: 302 

D 0 = 

d 

d τ0 

, D 1 = 

d 

d τ1 

, D 2 = 

d 

d τ2 

(61) 

Using the timescales, τi , i = 0 , 1 , 2 we transform Eq. (56) from an ordinary-differential equation into a partial differential 303 

equation: 304 

R̈ (t) + A 3 R (t) + ε 2 
(
A 1 R (t ) ̈R (t ) + A 2 R (t) 

2 
R̈ (t) + A 4 R (t) 

2 

+ A 5 R (t) 
3 + A 6 R (t) 

4 + A 7 R (t) 
5 
)

+ A 8 = 0 (62) 
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Equating coefficients of like powers of ε 0 , ε 1 , ε 2 in Eq. (62) : 305 

O 

(
ε 0 
)

: D 

2 
0 R 0 + A 3 R 0 = −A 8 (63) 

306 

O 

(
ε 1 
)

: D 

2 
0 R 1 + A 3 R 1 = −2 D 0 D 1 R 0 (63b) 

307 

O 

(
ε 2 
)

: D 

2 
0 R 2 + A 3 R 2 = −2 D 0 D 1 R 1 − 2 D 0 D 2 R 0 − D 

2 
1 R 0 − A 1 R 0 D 

2 
0 R 0 

− A 2 R 

2 
0 D 

2 
0 R 0 − A 4 R 

2 
0 − A 5 R 

3 
0 − A 6 R 

4 
0 − A 7 R 

5 
0 (64c) 

The general solution for the Eq. (63) is as follows: 308 

R 0 = −A 8 

A 3 

+ A ( τ1 , τ2 ) e 
i 
√ 

A 3 τ0 + Ā ( τ1 , τ2 ) e 
−i 

√ 

A 3 τ0 (64) 

where A ( τ1 , τ2 ) , Ā ( τ1 , τ2 ) are the Complex Conjugate functions. By replacing Eq. (64) in (63) following equation is obtained: 309 

310 

D 

2 
0 R 1 + A 3 R 1 = −2 i 

√ 

A 3 D 1 A ( τ1 , τ2 ) e 
i 
√ 

A 3 τ0 + 2 i 
√ 

A 3 D 1 ̄A ( τ1 , τ2 ) e 
−i 

√ 

A 3 τ0 (65) 

Clearly, Eq. (65) , breaks down because it contains secular terms and small-divisor terms. Due to R 1 be periodic, we need 311 

to eliminate the secular and small-divisor terms. Therefore, we set the coefficient e ±i 
√ 

A 3 τ0 equal to zero ( D 1 A ( τ1 , τ2 ) = 312 

D 1 ̄A ( τ1 , τ2 ) = 0 ). This result means that A ( τ1 , τ2 )& ̄A ( τ1 , τ2 ) are only functions of τ2 . Solving Eq. (65) gives Eq. (66) as fol- 313 

lows: 314 

R 1 = B ( τ1 , τ2 ) e 
i 
√ 

A 3 τ0 + B̄ ( τ1 , τ2 ) e 
i 
√ 

A 3 τ0 (66) 

Where B ( τ1 , τ2 ) , B̄ ( τ1 , τ2 ) are Complex Conjugate. By replacing the Eqs. (64) and (66) into Eq. (63) ; 315 

D 

2 
0 R 2 = CC + O.H.T + e i ω 0 t ×

(
−2 i 

√ 

A 3 D 1 B − 2 i 
√ 

A 3 D 2 A − 3 A 5 A 

2 Ā − A 1 A 8 AV 

2 
p 

+ 

A 2 A 

2 
8 A 

A 3 

+ 3 A 2 A 3 A 

2 Ā + 

2 A 4 A 8 A 

A 3 

− 3 A 5 A 

2 
8 A 

A 

2 
3 

− 5 A 7 A 

4 
8 A 

A 

4 
3 

− 30 A 7 A 

2 
8 A 

2 Ā 

A 

2 
3 

+ 

4 A 6 A 

3 
8 A 

A 

3 
3 

+ 

12 A 6 A 8 A 

2 Ā 

A 3 

− 10 A 7 A 

3 Ā 

2 

)
(67) 

where C C & O.H.T are conjugate and other harmonic terms that are neglected in the further calculations. The elimination of 316 

the secular expressions in the above equation requires that the right side of the Eq. (67) be equal to zero except for the 317 

O.H.T terms. It follows that B is a function of τ2 . 318 

−2 i 
√ 

A 3 D 2 A − 3 A 5 A 

2 Ā − A 1 A 8 A + 

A 2 A 

2 
8 A 

A 3 

+ 3 A 2 A 3 A 

2 Ā + 

2 A 4 A 8 A 

A 3 

− 3 A 5 A 

2 
8 A 

A 

2 
3 

− 5 A 7 A 

4 
8 A 

A 

4 
3 

− 30 A 7 A 

2 
8 A 

2 Ā 

A 

2 
3 

+ 

4 A 6 A 

3 
8 A 

A 

3 
3 

+ 

12 A 6 A 8 A 

2 Ā 

A 3 

− 10 A 7 A 

3 Ā 

2 = 0 (68) 

It is appropriate that A, expressed as a polar state: 319 

A = 

1 

2 

a ( τ2 ) e 
iβ( τ2 ) (69) 

where a and β are the real function of τ2 . Substituting (90) into (89) and separating the result into real and imaginary parts, 320 

we obtain: 321 

˙ a ( τ2 ) = 0 , (70) 

322 

˙ β = 

τ2 

−
√ 

A 3 a 
×
(

−3 

8 

A 5 a 
3 − 1 

2 

a A 1 A 8 + 

A 2 A 

2 
8 a 

2 A 3 

+ 

3 

8 

a 3 A 2 A 3 + 

A 4 A 8 a 

A 3 

−

3 A 5 A 

2 
8 a 

2 A 3 
2 

− 5 A 7 A 8 
4 a 

2 A 3 
4 

− 30 A 7 A 8 
2 a 3 

8 A 3 
2 

+ 

2 A 6 A 8 
3 a 

A 3 
3 

+ 

12 A 6 A 8 a 
3 

8 A 3 

− 10 

32 

A 7 a 
5 

)
(71) 

where the dot ( •) denotes the derivative concerning to τ2 . As ˙ a ( τ2 ) = 0 therefore a is a constant and 323 

a ( τ2 ) = a 0 , (72) 
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Fig. 6. Response of the micro-plate. 

324 

β = 

1 

−
√ 

A 3 a 
×
(

−3 

8 

A 5 a 
3 − 1 

2 

a A 1 A 8 + 

A 2 A 

2 
8 a 

2 A 3 

+ 

3 

8 

a 3 A 2 A 3 + 

A 4 A 8 a 

A 3 

− 3 A 5 A 

2 
8 a 

2 A 3 
2 

− 5 A 7 A 8 
4 a 

2 A 3 
4 

− 30 A 7 A 8 
2 a 3 

8 A 3 
2 

+ 

2 A 6 A 8 
3 a 

A 3 
3 

+ 

12 A 6 A 8 a 
3 

8 A 3 

− 10 

32 

A 7 a 
5 

)
τ2 + β0 (73) 

Here β0 is a constant. Now using τ2 = ε 2 t we reach to: 325 

A = 

1 

2 

a 0 × exp 

( 

i 
1 

−
√ 

A 3 a 

(
−3 

8 

A 5 a 
3 − 1 

2 

a A 1 A 8 + 

A 2 A 

2 
8 a 

2 A 3 

+ 

3 

8 

a 3 A 2 A 3 + 

A 4 A 8 a 

A 3 

−3 A 5 A 

2 
8 a 

2 A 3 
2 

− 5 A 7 A 8 
4 a 

2 A 3 
4 

− 30 A 7 A 8 
2 a 3 

8 A 3 
2 

+ 

2 A 6 A 8 
3 a 

A 3 
3 

+ 

12 A 6 A 8 a 
3 

8 A 3 

− 10 

32 

A 7 a 
5 

)
ε 2 t + β0 i 

)
(74) 

Substituting Eq. (74) in the expressions for R 0 , i.e., Eq. (64) one obtains: 326 

R 0 = −A 8 

A 3 

+ a 0 × cos 

( √ 

A 3 τ0 + 

1 

−
√ 

A 3 a 

(
−3 

8 

A 5 a 
3 − 1 

2 

a A 1 A 8 + 

A 2 A 

2 
8 a 

2 A 3 

+ 

3 

8 

a 3 A 2 A 3 + 

A 4 A 8 a 

A 3 

+ 

3 

8 

a 3 A 2 A 3 + 

A 4 A 8 a 

A 3 

− 3 A 5 A 8 
2 a 

2 A 3 
2 

− 5 A 7 A 8 
4 a 

2 A 3 
4 

− 30 A 7 A 8 
2 a 3 

8 A 3 
2 

+ 

2 A 6 A 8 
3 a 

A 3 
3 

+ 

12 A 6 A 8 a 
3 

8 A 3 

− 10 

32 

A 7 a 
5 

)
τ2 + β0 

)
(75) 

By replacing t = 0 in the relation (75) , the equation of the static deflection and with derivative from the relation (75) , 327 

and setting t = 0 , the relation of the initial velocity is obtained. Now, if the time tends to the infinitely, in other words 328 

τi → ∞ , i = 1 , 2 , Eq. (75) only has a mathematically meaning that a 0 goes to zero ( a 0 → 0 ). The remainder relationship is 329 

independent of time, indicating the maximum deflection of the micro-plate. 330 

w max = −A 8 

A 3 

(76) 

Fig. 6 shows the comparison between the response of Multiple scales method (MMS) and Runge –Kutta method with 331 

displacement and initial velocity of zero. As can be seen, the results of non-dimensional deflection obtained by Runge –kutta 332 

method with respect to time are in good agreement with the findings results presented by MMS. 333 

5.4. Dynamic response of rectangular micro-plate under electrical excitation 334 

In this section, the dynamic response of rectangular micro-plate under electrical excitation, consisting of DC constant and 335 

alternating AC voltages are studied. DC Voltage component causes to bend micro-plate to a new position. Then the AC volt- 336 

age causes vibration the micro-plate around the new equilibrium point. Such structures are used in resonator microscopes. 337 

Obtaining a frequency response curve in primary and secondary resonance modes and investigating instability dynamics 338 
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(pull-in) are the goals of this section. First, the system’s response to the electric voltage in the primary resonance is stud- 339 

ied by the method of multiple scales. In the following, the dynamic behavior of the micro-plate under Subharmonic and 340 

Superharmonic resonance conditions are also studied. In this section, it is supposed that the micro-plate shown in Fig. 1 is 341 

excited by an electrical voltage V (t) = V DC + V AC cos ( �t ) , where V DC is the constant voltage, V AC is the amplitude of variable 342 

voltage and � is the excitation frequency. 343 

5.4.1. Primary resonance using multiple scale method considering a weak forcing function 344 

In the primary resonance state, the excitation force frequency is very close to the fundamental natural frequency of the 345 

system. As discussed in the previous section, in the absence of external force, the amplitude of free vibration response is 346 

a function of the natural frequency ( ω 0 ) . Similar to the linear vibration here we may consider the behavior of the micro- 347 

plate near the resonance condition, i.e., when the external frequency is equal to the natural frequency of the system. This 348 

condition is known as the primary resonance condition ( � ≈ ω 0 ). To study the behavior of the system near the primary 349 

resonance condition, one may use the detuning parameter which represents the nearness of the external frequency to that 350 

of the natural frequency. Hence one may write: 351 

� = ω 0 + ε 2 σ (77) 

where � is the excitation frequency and ω 0 is the linear natural frequency of the system. σ is the detuning parameter that 352 

indicates the proximity of the excited frequency to the linear frequency of the system. In the primary resonance condition, 353 

the amplitude of the excitation force is considered the same order as the nonlinear terms. Therefore, the excitation voltage 354 

is sorted as follows. 355 

V (t) = V DC + ε 2 V AC cos (�t) (78) 

As a result, Eq. (56) found the form as follows: 356 

R̈ (t) + A 3 R (t) + A 9 

(
V DC + ε 2 V AC cos (�t) 

)2 + ε 2 
(
A 1 R (t ) ̈R (t ) 

+ A 2 R (t) 
2 
R̈ (t) + A 4 R (t) 

2 + A 5 R (t) 
3 + A 6 R (t) 

4 + A 7 R (t) 
5 
)

= 0 , 

A 9 = −16 β

9 

(79) 

In this analysis, it is assumed that V DC 
2 

>> V AC 
2 . Substituting Eq. (60) in Eq. (79) moreover, separate terms with a different 357 

order of ε, one obtains the following equations. 358 

O 

(
ε 0 
)

: D 

2 
0 R 0 + A 3 R 0 = −A 9 V 

2 
DC (80) 

359 

O 

(
ε 1 
)

: D 

2 
0 R 1 + A 3 R 1 = −2 D 0 D 1 R 0 (81) 

360 

O 

(
ε 2 
)

: D 

2 
0 R 2 + A 3 R 2 = −2 D 0 D 1 R 1 − 2 D 0 D 2 R 0 − D 

2 
1 R 0 

− A 1 R 0 D 

2 
0 R 0 − A 2 R 

2 
0 D 

2 
0 R 0 − A 4 R 

2 
0 − A 5 R 

3 
0 − A 6 R 

4 
0 − A 7 R 

5 
0 

− 2 A 9 V AC V DC cos (�t) (82) 

The general solution for the Eq. (80) is as follows: 361 

R 0 = −A 9 V 

2 
DC 

A 3 

+ A ( τ1 , τ2 ) e 
i 
√ 

A 3 τ0 + Ā ( τ1 , τ2 ) e 
−i 

√ 

A 3 τ0 (83) 

By substituting Eq. (83) in Eq. (81) one obtains the following equation. 362 

D 

2 
0 R 1 + A 3 R 1 = −2 i 

√ 

A 3 D 1 A ( τ1 , τ2 ) e 
i 
√ 

A 3 τ0 + 2 i 
√ 

A 3 D 1 ̄A ( τ1 , τ2 ) e 
−i 

√ 

A 3 τ0 (84) 

By solving Eq. (84) , one can write 363 

R 1 = B ( τ1 , τ2 ) e 
i 
√ 

A 3 τ0 + B̄ ( τ1 , τ2 ) e 
−i 

√ 

A 3 τ0 (85) 

By replacing (83) , (85) and (77) into the Eq. (82) ; the following equation is obtained. 364 

D 

2 
0 R 2 + A 3 R 2 = CC + O.H.T + e i ω 0 t ×

(
−2 i 

√ 

A 3 D 1 B − 2 i 
√ 

A 3 D 2 A − 3 A 5 A 

2 Ā 

− A 1 A 9 AV 

2 
DC + 

A 2 A 

2 
9 V 

2 
DC A 

A 3 

+ 3 A 2 A 3 A 

2 Ā + 

2 A 4 A 9 V 

2 
DC A 

A 3 

− 3 A 5 A 

2 
9 V 

4 
DC A 

A 

2 
3 

− 5 A 7 A 

4 
9 V 

8 
DC A 

A 

4 
3 

− 30 A 7 A 

2 
9 V 

4 
DC A 

2 Ā 

A 

2 
3 

+ 

4 A 6 A 

3 
9 AV 

6 
DC 

A 

3 
3 

+ 

12 A 6 A 9 V 

2 
DC A 

2 Ā 

A 3 
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− 10 A 7 A 

3 Ā 

2 − A 9 V AC V DC e 
iστ2 

)
(86) 

To eliminate the secular and near secular terms from Eq. (86) , one can write: 365 

−2 i 
√ 

A 3 D 2 A − 3 A 5 A 

2 Ā − A 1 A 9 AV 

2 
DC + 

A 2 A 

2 
9 V 

2 
DC A 

A 3 

+ 3 A 2 A 3 A 

2 Ā + 

2 A 4 A 9 V 

2 
DC A 

A 3 

− 3 A 5 A 

2 
9 V 

4 
DC A 

A 

2 
3 

− 5 A 7 A 

4 
9 V 

8 
DC A 

A 

4 
3 

− 30 A 7 A 

2 
9 V 

4 
DC A 

2 Ā 

A 

2 
3 

+ 

4 A 6 A 

3 
9 V 

6 
DC A 

A 

3 
3 

+ 

12 A 6 A 9 V 

2 
DC A 

2 Ā 

A 3 

− 10 A 7 A 

3 Ā 

2 − A 9 V AC V DC e 
iστ2 = 0 (87) 

It follows that B is only a function of τ2 . Now by substituting A = 

1 
2 a ( τ2 ) e 

iβ( τ2 ) in Eq. (87) moreover, separating the real and 366 

imaginary parts, following reduced equations are obtained. 367 

˙ a = 

−A 9 V AC V DC √ 

A 3 

sin (στ2 − β) , (88) 

368 

a ˙ β = 

1 

−
√ 

A 3 

{(
−1 

2 

A 1 A 9 V 

2 
DC + 

1 

2 

A 2 A 

2 
9 V 

2 
DC 

A 3 

+ 

A 4 A 9 V 

2 
DC 

A 3 

− 3 

2 

A 5 A 

2 
9 V 

4 
DC 

A 3 
2 

−

5 

2 

A 7 A 9 
4 V 

8 
DC 

A 3 
4 

+ 

2 A 6 A 9 
3 V 

6 
DC 

A 3 
3 

)
a + 

(
−3 

8 

A 5 − 30 

8 

A 7 A 9 
2 V 

4 
DC 

A 3 
2 

+ 

12 

8 

A 6 A 9 V 

2 
DC 

A 3 

+ 

3 

8 

A 2 A 3 

)
a 3 − 10 

32 

A 7 a 
5 − A 9 V AC V DC cos (στ2 − β) 

}
(89) 

To write these two equations in its autonomous form one may use γ = στ2 − β and obtained the following equations. 369 

˙ a = 

−A 9 V AC V DC √ 

A 3 

sin (γ ) , (90) 

370 

a ̇ γ = aσ + 

1 √ 

A 3 

((
−1 

2 

A 1 A 9 V 

2 
DC + 

1 

2 

A 2 A 

2 
9 V 

2 
DC 

A 3 

+ 

A 4 A 9 V 

2 
DC 

A 3 

− 3 

2 

A 5 A 

2 
9 V 

4 
DC 

A 3 
2 

−5 

2 

A 7 A 9 
4 V 

8 
DC 

A 3 
4 

+ 

2 A 6 A 9 
3 V 

6 
DC 

A 3 
3 

)
a + 

(
−3 

8 

A 5 − 30 

8 

A 7 A 9 
2 V 

4 
DC 

A 3 
2 

+ 

12 

8 

A 6 A 9 V 

2 
DC 

A 3 

+ 

3 

8 

A 2 A 3 

)
a 3 − 10 

32 

A 7 a 
5 − A 9 V AC V DC cos (γ ) 

)
(91) 

One should solve these two equations to obtain a and γ . Now for the steady state as ˙ a and ˙ γ equals to 0, one can write 371 

Eqs. (90) and (91) as: 372 

−A 9 V AC V DC √ 

A 3 

sin (γ ) = 0 , (92) 

373 

a 
√ 

A 3 σ + 

(
−1 

2 

A 1 A 9 V 

2 
DC + 

1 

2 

A 2 A 

2 
9 V 

2 
DC 

A 3 

+ 

A 4 A 9 V 

2 
DC 

A 3 

− 3 

2 

A 5 A 

2 
9 V 

4 
DC 

A 3 
2 

−

5 

2 

A 7 A 9 
4 V 

8 
DC 

A 3 
4 

+ 

2 A 6 A 9 
3 V 

6 
DC 

A 3 
3 

)
a + 

(
−3 

8 

A 5 − 30 

8 

A 7 A 9 
2 V 

4 
DC 

A 3 
2 

+ 

12 

8 

A 6 A 9 V 

2 
DC 

A 3 

+ 

3 

8 

A 2 A 3 

)
a 3 − 10 

32 

A 7 a 
5 = A 9 V AC V DC cos (γ ) (93) 

Now eliminating γ from the above equations, one obtains: 374 

σ = 

1 

a 
√ 

A 3 

×
(

±A 9 V AC V DC −
((

−1 

2 

A 1 A 9 V 

2 
DC + 

1 

2 

A 2 A 

2 
9 V 

2 
DC 

A 3 

+ 

A 4 A 9 V 

2 
DC 

A 3 

−3 

2 

A 5 A 

2 
9 V 

4 
DC 

A 3 
2 

− 5 

2 

A 7 A 9 
4 V 

8 
DC 

A 3 
4 

)
a + 

(
−3 

8 

A 5 − 30 

8 

A 7 A 9 
2 V 

4 
DC 

A 3 
2 

+ 

12 

8 

A 6 A 9 V 

2 
DC 

A 3 
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Fig. 7. Frequency response curve of a rectangular micro-plate for different values of ξ . 

Fig. 8. Frequency response curve of a rectangular micro-plate for different values of V DC . 

+ 

3 

8 

A 2 A 3 

)
a 3 + 

4 A 6 A 9 
3 V 

6 
DC 

A 3 
3 

− 10 

32 

A 7 a 
5 

))
(94) 

The frequency response curve of a rectangular micro-plate for V DC = 20 , V AC = 2 is given in Fig. 7 . 375 

As can be seen, the existence of nonlinear terms in the governing equation leads to appearance plate stiffness property. 376 

The saddle-node bifurcation points have been shown in Fig. 7 . To identify the pull-in dynamic voltage, the AC voltage re- 377 

sponse should be calculated. For this purpose, the amplitude range of the vibration should be plotted in terms of the excited 378 

amplitude. With increasing the voltage when the excitation voltage reaches to pull-in dynamic voltage, a sudden change in 379 

the amplitude of the vibration is observed. This sudden change in the vibration amplitude can be so high, that leads to a 380 

collision of a capacitor micro-plate with the fixed electrode. Therefore, for the design of such systems, it is necessary to 381 

care about critical voltage. It should be noted that, due to assumption ( V DC 
2 

>> V AC 
2 ), so by increasing AC voltage, this as- 382 

sumption can cause many errors in the semi-analytical response. However, in a low value of V AC the proposed method is 383 

an appropriate method. Fig. 8 shows the frequency response curve of a rectangular micro-plate for different DC voltages. 384 

According to this figure with increasing constant voltage ( V DC ) stiffness of the micro-plate becomes less. 385 

Fig. 9 shows the frequency response curve of a rectangular micro-plate for a DC voltage V DC = 20( V olt ) and different AC 386 

voltages. 387 

Regarding Fig. 9 , it can be seen that with increasing the alternating voltage, V AC the branches of each curve get more 388 

spaced apart. In other words, the voltages, V AC , does not have any effect on the level of stiffness of the micro-plate and only 389 

acts as an external excitation dynamic force. Fig. 10 shows the frequency response curve of a rectangular micro-plate for the 390 

AC voltage V AC = 2 v olt and DC voltage V DC = 20 v olt , for the different value of κ. According to this figure, it can be seen that 391 

the reduction of the non-dimensional parameter κ reduces the stiffness of the micro-plate as it has already been mentioned 392 
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Fig. 9. Frequency response curve of a rectangular micro-plate for different values of V AC . 

Fig. 10. Frequency response curve of a rectangular micro-plate for different values of κ . 

for the static case (Fig. 5). In other words, reducing κ reduces the effect of the stretch of the mid-plane and the stiffness of 393 

the micro-plate. 394 

Fig. 11 indicates the frequency response curve of a rectangular micro-plate for different values of ψ . According to this 395 

figure, a significant change in the frequency response curve is observed with decreasing ψ from 3 to 1. 396 

Fig. 12 shows the vibration amplitude curve according to the amplitude of the excitation force for a rectangular micro- 397 

plate for different values of σ . As seen it turns out that for positive values of σ for a given alternating voltage, there 398 

are several values for the vibration amplitude. However, for negative values of σ for an alternating voltage, there are not 399 

multiple values for the vibration amplitude. On the other hand, for positive values of σ by increasing σ , an increase in 400 

the critical dynamic voltage occurs. For instance, in the two cases of modified couple stress theory, pull-in voltages are as 401 

follow: 402 

σ = 3 ; { a = 0 . 222 

V AC, PI = 18 . 13 
and, σ = 1 ; { a = 0 . 138 

V AC, PI = 4 . 40 
. As a significant result, it can be stated that for a specific DC voltage, the 403 

critical dynamic voltage is a function of the forced excitation frequency. The effect of the mid-plane stretching on critical 404 

dynamic voltage is now investigated in Fig. 13 . 405 

This figure shows vibration amplitude in terms of the excitation force amplitude for different values of κ . As can be 406 

seen, with increasing κ , the critical dynamic voltage decreases. Previously mentioned that κ is the value of the stretch of 407 

the mid-plane. Therefore, for a given excitation frequency ( � = 1 ) , the increase in the κ decreases the critical dynamic 408 

voltage. 409 

Fig. 14 shows the vibration amplitude curve according to the amplitude of the excitation force for different values of ψ . 410 

As can be seen, by increasing ψ , the critical dynamic voltage ( V AC( Pul l −in ) ) decreases. 411 
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Fig. 11. Frequency response curve of a rectangular micro-plate for different values of ψ . 

Fig. 12. Vibration amplitude curve of a rectangular micro-plate for different values of σ . 

Fig. 13. Vibration amplitude in terms of the excitation force amplitude for a rectangular micro-plate for different values of κ . 
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Fig. 14. Vibration amplitude in terms of the excitation force amplitude for a rectangular micro-plate for different values of ψ . 

5.4.2. Secondary resonance 412 

In the secondary resonance, the domain of excitation load is not assumed to be small [62] , i.e., the forcing term is 413 

assumed to be of same the order as that of the linear term. So, the equation of motion considered in this case as: 414 

R̈ (t) + A 3 R (t) + ε 
(
A 1 R (t ) ̈R (t ) + A 2 R (t) 

2 
R̈ (t) + A 4 R (t) 

2 + A 5 R (t) 
3 + A 6 R (t) 4 + A 7 R (t) 

5 
)

= −A 9 ( V DC + V AC cos (�t) ) 
2 

(95) 

Using the method of multiple scales, the solution of Eq. (95) can be written as: 415 

R ( τ0 , τ1 , ε ) = R 0 ( τ0 , τ1 , ) + ε R 1 ( τ0 , τ1 ) (96) 

Now by separating the terms with a different order of ε, one obtains the following equations: 416 

O 

(
ε 0 
)

: D 

2 
0 R 0 + A 3 R 0 = −A 9 ( V DC + V AC cos (�t) ) 

2 
(97) 

417 

O 

(
ε 1 
)

: D 

2 
0 R 1 + A 3 R 1 = −2 D 0 D 1 R 0 − A 1 R 0 D 

2 
0 R 0 − A 2 Z 

2 
0 D 

2 
0 R 0 

−A 4 R 

2 
0 − A 5 R 

3 
0 − A 6 R 

4 
0 − A 7 R 

5 
0 

(98) 

The solution of Eq. (97) can be written as: 418 

R 0 = −A 9 V 

2 
DC 

2 A 3 

+ A ( τ1 ) e 
i ω 0 τ0 + 
e i �τ0 + CC (99) 

where 419 

ω 0 = 

√ 

A 3 , 
 = − A 9 V DC V AC (
ω 

2 
0 

− �2 
) (100) 

It may be noted that unlike the previous section, where only the complementary part of the solution was present, in 420 

this case, both complimentary and particular integral parts, are present in the solution of R 0 . It may be noted that when 421 

the exponent terms of the mixed secular terms are equal to ω 0 a resonance condition will occur. Hence, resonance will be 422 

observed in the system when; { 
� = ω 0 , ( Primary resonance ) 

� = 3 ω 0 , ( Sub harmonic resonance ) 

3� = ω 0 , ( Superharmonic Resonance ) 

. 423 

5.4.3. Superharmonic resonance 424 

To express the nearness of the external excitation frequency to one-third of the natural frequency one may use the 425 

detuning parameter � ≈ 1 
3 ω 0 as follows: 426 

3� = ω 0 + σε (101) 

Now to eliminate the secular and near secular terms from Eq. (98) one can write: 427 

−A 5 

3 e iεστ0 − 2 i ω 0 D 1 A + A 2 


3 �2 e iεστ0 − 6 A 5 A 
2 − 3 A 5 A 

2 Ā + 3 A 2 A 

2 Ā ω 

2 

− 10 A 7 A 

2 
9 V 

4 
DC 


3 e iεστ0 

A 

2 
3 

− 60 A 7 A 

2 
9 V 

4 
DC A 
2 

A 

2 
3 

− 3 A 5 A 

2 
9 V 

4 
DC A 

A 

2 
3 

− 60 A 7 A 

2 Ā 
2 
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+ 

2 A 4 A 9 V 

4 
DC A 

A 3 

+ 

12 A 6 A 9 V 

2 
DC A 

2 Ā 

A 3 

+ 

4 A 6 A 9 V 

2 
DC 


3 e iεστ0 

A 3 

− 10 A 7 A 

3 Ā 

2 

− 5 A 7 A 9 
4 V 

8 
DC A 

A 3 
4 

− 30 A 7 A 
4 + 

24 A 6 A 9 V 

2 
DC A 
2 

A 3 

+ 4 A 2 A 
2 �2 

+ 2 A 2 A 
2 ω 

2 
0 + 

A 2 A 9 
2 V 

4 
DC Aω 

2 
0 

A 3 
2 

− 5 A 7 

5 e iεστ0 = 0 (102) 

Using A = 

1 
2 a ( τ1 ) e 

iβ( τ1 ) and separating the real and imaginary parts following reduced equations are obtained. 428 
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)
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(103) 
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(104) 

Now to express the above equations in their autonomous form one may use the following transformation., γ = στ1 − β430 

Hence, Eq. (103) can be written as: 431 
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(106) 

For steady state, the time derivative terms should be vanished, in Eq. (105) and (106) , i.e., ˙ a = ˙ γ = 0 . Now by eliminating γ433 

from the above two equations, one can obtain a closed-form equation which can be used for finding the frequency response 434 

of the system and the relation between the detuning parameter and the amplitude of the response as follows: 435 
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(107) 

Hence, in this resonance condition, the nonlinearity adjusts the frequency of the free oscillation term to precisely three times 436 

the frequency of the excitations so that the response is periodic. Since the frequency of the free oscillation term is three 437 

times the frequency of excitation, such resonances are called superharmonic resonances [62] . Fig. 15 shows the frequency 438 

response curve of a micro-plate under electric voltage under superharmonic resonance state for different values of κ . 439 

According to the above figure, it can be seen that by increasing the values of κ result in decreases the region in the 440 

frequency response curve. Also, with changing κ in large values of σ , the slip of frequency response diagrams does not 441 

change. It should be noted that by increasing κ the backbone curve tends to be moved to the right side. 442 
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Fig. 15. Frequency response curve of a micro-plate under electric voltage and superharmonic resonance state for different values of κ . 

Fig. 16. Frequency response curve of a micro-plate under electric voltage and superharmonic resonance state for different values of V AC . 

Fig. 16 . shows the frequency response curve of a micro-plate under electric voltage in superharmonic resonance state 443 

for different V AC values. It can be seen that by increasing the values of V AC result in decreases the region in the frequency 4 4 4 

response curve. Also, for any values of V AC , the slip of frequency response diagrams does not change. This trend means that 445 

changing the AC voltage ( V AC ) does not affect the stiffness of the micro-plate. 446 

Fig. 17 . shows the frequency response curve of a micro-plate under electric voltage in superharmonic resonance state for 447 

different V DC values. It should be noted that by increasing V DC stiffness of the micro-plate reduced, and the backbone curve 448 

tends to be moved to the right side. 449 

5.4.4. Subharmonic resonance 450 

When the external frequency is nearly three times the natural frequency of the system, using detuning parameter one 451 

can write 452 

� = 3 ω 0 + σε (108) 

Using a similar procedure of the multiple scale method, eliminating the secular terms from Eq. (98) one can write: 453 
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2 
e iεστ0 

A 3 

+ 2 A 2 ̄A 

2 
ω 

2 
0 e 

iεστ0 

− 60 A 7 A 

2 Ā 
2 − 3 A 5 A 9 
2 V 

4 
DC A 

A 3 
2 

+ 

2 A 4 A 9 V 

2 
DC A 

A 3 

+ 

A 2 A 9 
2 V 

4 
DC Aω 

2 
0 

A 3 
2 

− 30 A 7 A 
4 

− 10 A 7 A 

3 Ā 
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Fig. 17. Frequency response curve of a micro-plate under electric voltage and superharmonic resonance state for different values of V DC . 
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Using A = 

1 
2 a ( τ2 ) e 

iβ( τ2 ) and separating the real and imaginary parts following reduced equations are obtained. To express 454 

the obtained equations in their autonomous form one may use the γ = στ1 − 3 β transformation. 455 
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(111) 

For steady state, the time derivative terms should be vanished, in Eq. (110) and (111) , i.e., ˙ a = ˙ γ = 0 . Now by eliminating γ457 

from the above two equations, one can obtain a closed-form equation which can be used for finding the frequency response 458 

of the system: 459 
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Fig. 18. Frequency Response curve of a micro-plate in subharmonic resonance conditions for various values of κ . 

Fig. 19. Frequency response curve for a micro-plate under subharmonic resonance conditions for different V AC values. 
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(112) 

Above equation shows the system has a trivial state response (i.e., a = 0 ) and a non-trivial response. The frequency response 460 

curve of a micro-plate in subharmonic resonance conditions for various values of κ is shown in Fig. 18 . From Fig. 18 , it can 461 

be seen that by increasing the value of κ , the frequency response curves are shifted to the right side. The frequency response 462 

curve of a micro-plate under subharmonic resonance conditions for different V AC values is shown in Fig. 19 . According to this 463 

figure, it can be concluded that by increasing the Ac voltage ( V AC ) , the frequency response curves are closer to the vertical 464 

axis and the distance between the two branches of each curve will be greater. It is also observed that the increase in V AC 465 

voltage does not affect the slope of the diagrams. 466 

The frequency response curve of a micro-plate under AC voltage V AC = 5( v ot ) under subharmonic resonance conditions 467 

for different values of V DC is shown in Fig. 20 . As can be seen, increasing the V DC voltage reduces the stiffness of the micro- 468 

plate. 469 

6. Conclusions 470 

In this paper, we study the static behavior of a rectangular micro-plate under a constant electrostatic voltage V DC and 471 

its dynamic response when subjected to electrical forces consisting of a constant voltage V DC or alternating voltage V AC . 472 

Nonlinear von Kármán’s relations are used for developing nonlinear governing differential equations of motion for thin 473 

micro-plates which are solved by Galerkin and Multiple scale methods. The boundary conditions of the micro-plate have 474 
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Fig. 20. The frequency response curve for a micro-plate under subharmonic resonance conditions for different V DC values. 

been assumed to be clamped with immovable edges. Numerical results presented in this paper leading to the following 475 

findings: 476 

• Increasing κ (gap-to-thickness ratio) leads to an increase in the value of pull-in critical voltage and the maximum pull-in 477 

deflection of the micro-plate (Figs. 5 and 10 ) 478 

• Increasing ψ (length-to-width ratio) enhances the critical electrostatic pull-in voltage and micro-plate stiffness ( Fig. 6 ) 479 

• It is observed that two types of critical dynamic voltage can occur in clamped micro-plates. In the first type, the micro- 480 

plate experiences a sudden fluctuation with a large amplitude (without any contact with the fixed electrode) by reaching 481 

the critical voltage. In the second type, it collides the fixed electrode due to the high vibration amplitude. In either case, 482 

the system enters an unstable region that should be avoided. ( Fig. 12 ) 483 

• It can be recognized that the critical dynamic voltage of clamped micro-plates is a function of the excitation force fre- 484 

quency for a specific DC voltage. 485 

• It is found that the bending stiffness of the micro-plate decreases in the frequency response curve by increasing the 486 

constant DC voltage ( Fig. 8 ). However, an increase in the alternating AC voltage does not affect the stiffness of the micro- 487 

plate ( Fig. 9 ) 488 
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Appendix A: Brief Review on Modified Couple Stress Theory (MCST) 492 

Recently, the importance of vibration at higher mode numbers besides wave propagation in wavelength at the size of 493 

the lattice of the medium attracted significant attention. So, the size effect is expected to become remarkable and from 494 

a physical point of view, the unusable of classical continuum theory in the above-mentioned cases can be demonstrated, 495 

because the wavelength approaches the scale of nanostructures and classical continuum theory fails to anticipate the size 496 

dependency [ 78 , 79 ]. To this end, different discrete models or continuum ones have been so far extended. Many attempts 497 

have been made to present the non-classical continuum theories by incorporating nonlocality and higher gradient of dis- 498 

placement in kinetic description, such as nonlocal elasticity theory, couple stress theory and strain gradient theory. Recently, 499 

studies based on these theories have been an area of active research. Although elegant, contrary to their determinative role, 500 

none of them has hitherto been provided the correct physical interpretation of characteristic length scale. Thus, it remains 501 

to be determined how the accuracy of these studies can be verified. While, the results of molecular dynamics (MDs) simu- 502 

lations are presented for comparison purposes, there is still controversy in results [ 79 , 80 ]. 503 

According to MCST, both strain and curvature tensors contribute to the strain energy density. Based on MCST, the strain 504 

energy ( U) in an isotropic linear elastic material occupying region � can be written as [81] : 505 

U = 

1 

2 

∫ 
�

(
σi j ε i j + m i j χi j 

)
d� (A.1) 
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where σi j , ε i j , m i j and χi j are Cauchy stress, strain, deviatoric part of couple stress tensor and symmetric curvature tensors, 506 

respectively. The constitutive relations for these tensors are defined as [82] : 507 

σi j = λε ii + 2 με i j (A.2) 

508 

ε i j = 

1 

2 

(
u i, j + u j,i 

)
(A.3) 

509 

m i j = 2 μl 2 χi j (A.4) 

510 

χi j = 

1 

2 

(
θi, j + θ j,i 

)
(A.5) 

where u i is the displacement vector, λ = 

Eυ
( 1+ υ)( 1 −2 υ) 

and μ = 

E 
2( 1+ υ) 

are Lame’s constants ( μ is also known as shear mod- 511 

ulus), θi is the rotation vector defined as Eq. (A.6) [82] and l is a material length scale parameter, which can be estimated 512 

through experimental tests [ 83 , 84 ], or by simulation technics such as molecular dynamics (MD), which are widely used in 513 

monitoring the behavior of a specific system of atoms during dynamic processes [85] . 514 

In comparison with other non-classical theories that have two or three parameters as length scales, modified couple 515 

stress theory by having only one length scale parameter is one the most appropriate theories in micro scale analysis. This 516 

assumption in the framework of couple stress theory might be promising and have potential applications for experimental 517 

investigations; determining only one constant via experimental methods is much easier than measuring more constants. 518 

θi = 

1 

2 

e i jk u k, j (A.6) 

In Eq. (A.6), e i jk ( i, j, k = 1, 2, 3) represents the permutation symbol. Compared to the classical continuum mechanics, the 519 

Modified couple stress theory has one additional parameter (high-order material length scale) other than two classical 520 

Lame’s constants in constitutive equations for isotropic elastic materials. 521 

Appendix B 522 

Hamilton’s principle can be expressed as [86] : 523 ∫ t 2 

t 1 

( δT − δU + δW ext ) dt = 0 (B.1) 

where δT , δU and δW ext denote, virtual kinetic energy, virtual strain energy and virtual work done by external forces, re- 524 

spectively. The virtual kinetic energy is: 525 

δT = 

∫ 
Z 

∫ 
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(ρD̈ .δD ) dAdZ 

= −
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∫ h/ 2 
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∂t 
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dZdA (B.2) 

In Eq. (B.2) overdot denotes the differentiation with respect to the time variable t, and A represents the mid-plane surface 526 

and ρ is the density of micro-plate and: 527 { 

I 0 
I 1 
I 2 

} 
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ρ
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dZ = ρ
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, (B.3) 

528 

δD = (δU − ZδW ,X ) 
� 

I + ( δV − ZδW ,Y ) 
� 

J + δW 

� 

K , (B.4a) 

529 

D̈ = 

(
Ü − Z Ẅ ,X 

)� 

I + 

(
V̈ − Z Ẅ ,Y 

)� 

J + Ẅ 

� 

K (B.4b) 

In equations above, D represents displacement and is defined as D = U 1 

� 

I + V 1 
� 

J + W 1 

� 

K and overdot denotes the differentia- 530 

tion concerning the time variable ( t ). In consideration of Eq. (A.1), the expression for virtual strain energy can be expressed 531 

as: 532 

δU = 

∫ 
A 

∫ h/ 2 

−h/ 2 

{(
σi j + σ r 

i j 

)
δε i j + m i j δχi j 

}
dZdA 

= 

∫ 
A 

∫ h/ 2 

−h/ 2 
( σXX δε XX + σY Y δε Y Y + σXY δγXY + σ r 

XX δε XX + σ r 
Y Y δε Y Y 

+ m XX δχXX + m Y Y δχY Y + 2 m XY δχXY + 2 m XZ δχXZ + 2 m ZY δχZY ) dZdA (B.5) 
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Strain energy can be written by considering Eq. (A.1): 533 
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)2 

− Z W ,xx 

) 

+ 

( 

E 

1 − υ2 

( 

∂V 
∂Y 

+ 

1 
2 

(
∂W 

∂Y 

)2 − Z W ,Y Y 

+ υ
(

∂U 
∂X 

+ 

1 
2 

(
∂W 

∂X 

)2 − Z W ,XX 

)) 

+ σ r 
Y 

) 

×
( 

∂V 

∂Y 
+ 

1 

2 

(
∂W 

∂Y 

)2 

− Z W ,Y Y 

) 

+ 

E 

2 ( 1 + υ) 

(
∂U 

∂Y 
+ 

∂V 

∂X 

+ 

∂W 

∂X 

∂W 

∂Y 
− 2 Z W ,XY 

)2 

+ 

2 E l 2 

1 + υ

(
∂ 2 W 

∂ X ∂ Y 

)2 

+ 

E l 2 

2 ( 1 + υ) 

(
∂ 2 W 

∂ Y 2 
− ∂ 2 W 

∂ X 

2 

)2 

+ 

E l 2 

8 ( 1 + υ) 

(
∂ 2 V 

∂ X 

2 
− ∂ 2 U 

∂ X ∂ Y 

)2 

+ 

E l 2 

8 ( 1 + υ) 

(
∂ 2 V 

∂ X ∂ Y 
− ∂ 2 U 

∂ Y 2 

)2 
) 

(B.6) 

where υ and E are the Poisson’s ratio and elastic modulus of the micro-plate, respectively. The virtual work by the dis- 534 

tributed load can be obtained as [ 12 , 13 ]: 535 

δW ext = 

∫ 
A 

f external δW dA = 

∫ 
X 

∫ 
Y 

(
ε 0 V ( t ) 

2 

2 ( g − W ) 
2 

)
δW dX dY (B.7) 

In Eq. (B.7), the external force per unit area of the micro-plate, f external , is an electric load composed of a DC component 536 

( V DC ) and an AC component ( V AC (t) ), and ε 0 is the permittivity coefficient of vacuum, and g is the distance between these 537 

two micro-plates. Resultants of axial residual forces per unit length N 

r 
XX 

and N 

r 
Y Y 

are introduced as [87] : 538 

N 

r 
XX = σ r 

XX h, N 

r 
Y Y = σ r 

Y Y h (B.8) 

where σ r 
XX and σ r 

Y Y represents the axial residual stresses. Substituting Eqs. (B.2), (B.5) and (B.7) into Eq. (B.1), integrat- 539 

ing the outcomes by parts, using the fundamental lemma of variational calculus [86] and conducting some mathematical 540 

manipulations, the following equations of motion: 541 

∂ 

∂X 

Y XX + 

∂ 

∂Y 
Y XY + 

1 

2 

(
∂ 2 

∂ X ∂ Y 
	XZ + 

∂ 2 

∂ Y 2 
	Y Z 

)
= I 0 ̈U , (B.9a) 

542 

∂ 

∂X 

Y XY + 

∂ 

∂Y 
Y Y Y − 1 

2 

(
∂ 2 

∂ X 

2 
	XZ + 

∂ 2 

∂ X ∂ Y 
	Y Z 

)
= I 0 ̈V , (B.9b) 

543 

∂ 2 

∂ X 

2 

XX + 2 

∂ 2 

∂ X ∂ Y 

XY + 

∂ 2 

∂ Y 2 

Y Y + Y XX 

∂ 2 

∂ X 

2 
W + 2 Y XY 

∂ 2 

∂ X ∂ Y 
W 

+ Y Y Y 
∂ 2 

∂ Y 2 
W + 

∂ Y XX 

∂X 

∂W 

∂X 

+ 

∂ Y XY 

∂X 

∂W 

∂Y 
+ 

∂ Y XY 

∂Y 

∂W 

∂X 

+ 

∂ Y Y Y 

∂Y 

∂W 

∂Y 

+ N 

r 
XX 

∂ 2 W 

∂ X 

2 
+ N 

r 
Y Y 

∂ 2 W 

∂ Y 2 
+ 

∂ 2 

∂ X 

2 
	XY − ∂ 2 

∂ Y 2 
	XY + 

∂ 2 

∂ X ∂ Y 
	Y Y − ∂ 2 

∂ X ∂ Y 
	XX 

+ 

ε 0 V (t) 
2 

2 ( g − W ) 
2 

= I 0 Ẅ − I 2 

(
∂ 2 Ẅ 

∂ X 

2 
+ 

∂ 2 Ẅ 

∂ Y 2 

)
(B.9c) 

and boundary conditions: 544 (
Y XX + N 

r 
XX + 

1 

4 

∂ 	XZ 

∂Y 

)
n XX + 

(
Y XY + 

1 

4 

∂ 	XZ 

∂X 

+ 

1 

2 

∂ 	Y Z 

∂Y 

)
n Y Y = 0 

or δU = 0 , (B.10a) 

545 
1 

4 

	XZ n Y Y = 0 or 
∂δU 

∂X 

= 0 , (B.10b) 

546 
1 

4 

	XZ n XX + 

1 

2 

	Y Z n Y Y = 0 or 
∂δU 

∂Y 
= 0 , (B.10c) 

Please cite this article as: I. Karimipour, Y.T. Beni and A.H. Akbarzadeh, Size-dependent nonlinear forced vibration and 

dynamic stability of electrically actuated micro-plates, Commun Nonlinear Sci Numer Simulat, https://doi.org/10.1016/j. 

cnsns.2019.104856 

https://doi.org/10.1016/j.cnsns.2019.104856


30 I. Karimipour, Y.T. Beni and A.H. Akbarzadeh / Commun Nonlinear Sci Numer Simulat xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: CNSNS [m3Gsc; May 23, 2019;14:20 ] 

547 (
Y Y Y + N 

r 
Y Y − 1 

4 
∂ 	Y Z 

∂X 

)
n Y Y + 

(
Y XY − 1 

4 
∂ 	Y Z 

∂Y 
− 1 

2 
∂ 	XZ 

∂X 

)
n XX = 0 

or δV = 0 , 
(B.10d) 

548 
1 

4 

	Y Z n Y Y + 

1 

2 

	XZ n XX = 0 or 
∂δV 

∂X 

= 0 , (B.10e) 

549 
1 

4 

	Y Z n XX = 0 or 
∂δV 

∂Y 
= 0 , (B.10f) 

550 (
( Y XX + N 

r 
XX ) 

∂W 

∂X 

+ ( Y XY ) 
∂W 

∂Y 
+ 

∂ 
XX 

∂X 

+ 

∂ 
XY 

∂Y 

−1 

2 

∂ 

∂Y 
	XX + 

∂ 

∂X 

	XY + 

1 

2 

∂ 

∂Y 
	Y Y + I 2 

∂ Ẅ 

∂X 

)
n XX 

+ 

(
( Y Y Y + N 

r 
Y Y ) 

∂W 

∂Y 
+ ( Y XY ) 

∂W 

∂X 

+ 

∂ 
Y Y 

∂Y 
+ 

∂ 
XY 

∂X 

−1 

2 

∂ 

∂X 

	XX − ∂ 

∂Y 
	XY + 

1 

2 

∂ 

∂X 

	Y Y + I 2 
∂ Ẅ 

∂Y 

)
n Y Y = 0 

or δW = 0 , (B.10g) 

551 

( 
XX + 	XY ) n XX + 

(

XY − 1 

2 

	XX + 

1 

2 

	Y Y 

)
n Y Y = 0 

or 
∂δW 

∂X 

= 0 , (B.10h) 

552 

( 
Y Y − 	XY ) n Y Y + 

(

XY − 1 

2 

	XX + 

1 

2 

	Y Y 

)
n XX = 0 

or 
∂δW 

∂Y 
= 0 (B.10i) 

are derived. In above equations n i ( i = XX, Y Y ) ar e the components of a normal vector to the boundary of the mid-plane of 553 

micro-plate. To extract the governing equations of motion in terms of displacements, stress and couple stress consequents 554 

can be written as: 555 { 


XX 


Y Y 


XY 

} 

= 

∫ h/ 2 

−h/ 2 

Z 

{ 

σXX 

σY Y 

σXY 

} 

dZ = 

−E h 

3 

12 

(
1 − υ2 

)
[ 

1 υ 0 

υ 1 0 

0 0 ( 1 − υ) / 2 

] 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∂ 2 W 

∂ X 2 

∂ 2 W 

∂ Y 2 

2 

∂ 2 W 

∂ X∂ Y 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(B.11a) 

556 ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

	XX 

	Y Y 

	XY 

	XZ 

	Y Z 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

∫ h/ 2 

−h/ 2 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

m XX 

m Y Y 

m XY 

m XZ 

m Y Z 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

dZ = 

Eh l 2 

1 + υ

⎡ 

⎢ ⎢ ⎢ ⎣ 

1 0 0 0 0 

0 −1 0 0 0 

0 0 − 1 
2 

0 0 

0 0 0 − 1 
4 

0 

0 0 0 0 − 1 
4 

⎤ 

⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ 2 W 

∂ X∂ Y 

∂ 2 W 

∂ X∂ Y 

∂ 2 W 

∂ X 2 
− ∂ 2 W 

∂ Y 2 

∂ 2 U 
∂ X∂ Y 

− ∂ 2 V 
∂ X 2 

∂ 2 U 
∂ Y 2 

− ∂ 2 V 
∂ X∂ Y 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(B.11b) 

557 { 

Y XX 

Y Y Y 

Y XY 

} 

= 

∫ 
Z 

{ 

σXX 

σY Y 

σXY 

} 

dZ = 

Eh (
1 − υ2 

)
[ 

1 υ 0 

υ 1 0 

0 0 ( 1 − υ) / 2 

] 

⎧ ⎪ ⎨ 

⎪ ⎩ 

∂U 
∂X 

+ 

1 
2 

(
∂W 

∂X 

)2 

∂V 
∂Y 

+ 

1 
2 

(
∂W 

∂Y 

)2 

∂U 
∂Y 

+ 

∂V 
∂X 

+ 

∂W 

∂X 
∂W 

∂Y 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(B.11c) 

Appendix C 558 

Constant C 1 , C 2 , A n , and B n , introduced in Eq. (36) , are determined here. On the determination of these constants, it is 559 

observed that: 560 

[ F c,XY ] X= ±a/ 2 = E g 2 W m 

2 
n ∑ 

n =1 

∓2 Anπ sin ( nπ) λ

na ( UλP + nπ) 

(
−2 

πUn ( 2π nY Q + aR ) 

a 2 

Please cite this article as: I. Karimipour, Y.T. Beni and A.H. Akbarzadeh, Size-dependent nonlinear forced vibration and 

dynamic stability of electrically actuated micro-plates, Commun Nonlinear Sci Numer Simulat, https://doi.org/10.1016/j. 

cnsns.2019.104856 

https://doi.org/10.1016/j.cnsns.2019.104856


I. Karimipour, Y.T. Beni and A.H. Akbarzadeh / Commun Nonlinear Sci Numer Simulat xxx (xxxx) xxx 31 

ARTICLE IN PRESS 

JID: CNSNS [m3Gsc; May 23, 2019;14:20 ] 

+2 

nπ ( P π n + Uλ) R 

aλ

)
− 2 BT nπ

λ2 nb ( sinh ( nπλ) cosh ( nπλ) + nπλ) 

×
(

±2 

( sinh ( nπλ) + nπλ cosh ( nπλ) ) nπ sinh ( K ) 

b 
+ 

( ∓2 sinh ( nπλ) cosh ( K ) K ∓ 2 sinh ( nπλ) sinh ( K ) ) nπ

b 

)
, 

[ F c,XY ] Y = ±b/ 2 = 

n ∑ 

n =1 

±4 

E g 2 W m 

2 Bnn π3 sin ( nπ) 

b 3 λ2 ( sinh ( nπλ) cosh ( nπλ) + nπλ) 

×
(
− cosh ( nπλ) sinh 

(
2 

nπ X 

b 

)
bλ + 2 sinh ( nπλ) H X 

)
− 2 AnπλJ 

na ( UλP + nπ) 

(
±2 

nπ sinh ( S ) ( P π n + Uλ) 

aλ
∓

2 

πUn ( π cosh ( S ) bn + sinh ( S ) a ) 

a 2 

)
(C.1) 

where 561 

H = cosh( 2 

nπ X 

b 
) , S = 

nπ b 

a 
, T = sin 

(
2 

nπY 

b 

)
, P = cosh 

(
nπ

λ

)
, 

U = sinh 

(
nπ

λ

)
, K = 

nπ a 

b 
, Q = cosh( 2 

nπY 

a 
) , R = sin h( 2 

nπY 

a 
) (C.2) 

Introducing equation F = F c + F p into the equation of boundary conditions (18) and taking into account Eqs. (35) and (C.2), 562 

the constants C 1 and C 2 are determined. 563 

Appendix D 564 

The coefficients A i , i = 1 , 2 , . . . , 8 , of Eq. (56) are presented as: 565 

A 1 = −25 

18 

, A 2 = 

1225 

2304 

, A 3 = 16 / 3 

((
ψ 

4 + 2 / 3 ψ 

2 + 1 

)
( ξ + 1 ) π2 

+1 / 4 ψ 

2 N y + N x / 4 

)
π2 , 

A 4 = −
80 π2 

((
ψ 

4 + 4 / 5 ψ 

2 + 1 

)
( ξ + 1 ) π2 + 1 / 4 ψ 

2 N y + N x / 4 

)
9 

, 

A 8 = −16 β( V DC + V AC cos ( �t ) ) 
2 

9 

, 

A 6 = 

( υ + 1 ) π4 
(
264 ψ 

16 υ − 504 ψ 

16 + 2772 ψ 

14 υ − 5532 ψ 

14 + 11267 ψ 

12 υ

− 22922 ψ 

12 + 24218 ψ 

10 υ − 47063 ψ 

10 + 34158 ψ 

8 υ − 57003 ψ 

8 

+ 24218 ψ 

6 υ − 35873 ψ 

6 + 11267 ψ 

4 υ − 14027 ψ 

4 + 2772 ψ 

2 υ

−3012 ψ 

2 + 264 υ − 264 

)
κ2 

96 

(
ψ 

2 + 1 / 4 

)2 (
ψ 

2 + 1 

)2 (
ψ 

2 + 4 

)2 
, (D.1) 

566 

A 7 = −

( 21 υ + 21 ) π4 
(
480 ψ 

16 υ − 880 ψ 

16 + 5040 ψ 

14 υ − 9640 ψ 

14 

+20846 ψ 

12 υ − 40271 ψ 

12 + 45740 ψ 

10 υ − 83815 ψ 

10 + 65388 ψ 

8 υ
−103463 ψ 

8 + 45740 ψ 

6 υ − 65165 ψ 

6 + 20846 ψ 

4 υ − 25446 ψ 

4 + 

5040 ψ 

2 υ − 5440 ψ 

2 + 480 υ − 480 

)
κ2 

8192 

(
ψ 

2 + 1 / 4 

)2 (
ψ 

2 + 1 

)2 (
ψ 

2 + 4 

)2 
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567 

A 5 = 

175 π2 ×
{((

4 
5 

− 68 υ2 

175 
+ 

72 υ
175 

)
κ2 + ξ + 1 

)
π2 ψ 

16 + 

((
68 
175 

− 68 υ2 

175 

)
κ2 + ξ + 1 

)
π2 

+ N x / 4 + 

((
− ( 102 υ+102 ) κ2 

25 

(
υ − 257 

119 

)
+ 

159 
14 

+ 

159 ξ
14 

)
π2 + N y / 4 

)
ψ 

14 + (((
25259 

700 
− 11273 υ2 

700 
+ 

999 υ
50 

)
κ2 + 

769 
16 

+ 

769 ξ
16 

)
π2 + N x / 4 + 

21 N y 
8 

)
ψ 

12 + (((
2528 

35 
− 11573 υ2 

350 
+ 

13707 υ
350 

)
κ2 + 

401 
4 

+ 

401 ξ
4 

)
π2 + 

21 N x 
8 

+ 

609 N y 
64 

)
ψ 

10 + ψ 

8 (
− ( 15753 υ+15753 ) κ2 ( υ− 9820 

5251 ) 
350 

+ 

7005+7005 ξ
56 

)
π2 + 

609 N x +914 N y 
64 

+ 

(((
9283 
175 

− 11573 υ2 

350 
+ 

999 υ
50 

)
κ2 + 

401 
4 

+ 

401 ξ
4 

)
π2 + 

457 N x 
32 

+ 

609 N y 
64 

)
ψ 

6 

+ 

(((
2917 
140 

− 11273 υ2 

700 
+ 

828 υ
175 

)
κ2 + 

769 
16 

+ 

769 ξ
16 

)
π2 + 

609 N x 
64 

+ 

21 N y 
8 

)
ψ 

4 + (((
786 
175 

− 102 υ2 

25 
+ 

72 υ
175 

)
κ2 + 

159 
14 

+ 

159 ξ
14 

)
π2 + 

21 N x 
8 

+ N y / 4 

)
ψ 

2 
}

48 

(
ψ 

2 + 4 

)2 (
ψ 

2 + 1 

)2 (
ψ 

2 + 1 / 4 

)2 

It is worth mentioning that, we assume in the abovementioned equations that voltage varies according to V (t) = V DC + 568 

V AC cos ( �t ) , � is the excitation frequency 569 

References 570 

[1] Francais O, Dufour I. Normalized abacus for the global behavior of diaphragms: pneumatic, electrostatic, piezoelectric or electromagnetic actuation. J 571 
Model Simul Microsyst 1999;2:149–60. 572 

[2] Ghayesh MH, Farokhi H. Nonlinear behaviour of electrically actuated microplate-based MEMS resonators. Mech Syst Signal Process 2018;109:220–34. 573 
[3] Farokhi H, Ghayesh MH. On the dynamics of imperfect shear deformable microplates. Int J Eng Sci 2018;133:264–83. 574 
[4] Batra R, Porfiri M, Spinello D. Review of modeling electrostatically actuated microelectromechanical systems. Smart Mater Struct 2007;16:R23. 575 
[5] Shojaeian M, Beni YT. Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges. Sens Actuators, A 2015;232:49–62. 576 
[6] Tadi Beni Y. Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J Intell 577 

Mater Syst Struct 2016;27:2199–215. 578 
[7] Akbarzadeh A, Pasini D. Multiphysics of multilayered and functionally graded cylinders under prescribed hygrothermomagnetoelectromechanical load- 579 

ing. J Appl Mech 2014;81:041018. 580 
[8] Akbarzadeh A, Chen Z. Hygrothermal stresses in one-dimensional functionally graded piezoelectric media in constant magnetic field. Compos Struct 581 

2013;97:317–31. 582 
[9] Belardinelli P, Sajadi B, Lenci S, Alijani F. Global dynamics and integrity of a micro-plate pressure sensor. Commun Nonlinear Sci Numer Simul 583 

2019;69:432–44. 584 
[10] Akbarzadeh A, Chen Z. Thermo-magneto-electro-elastic responses of rotating hollow cylinders. Mech Adv Mater Struct 2014;21:67–80. 585 
[11] Francais O, Dufour I. Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena. Sens Actuators, A 1998;70:56–60. 586 
[12] Hayt WH, Buck JA. Engineering electromagnetics. New York: McGraw-Hill; 2001. 587 
[13] Karimipour I, Beni YT, Zeighampour H. Nonlinear size-dependent pull-in instability and stress analysis of thin plate actuator based on enhanced 588 

continuum theories including nonlinear effects and surface energy. Microsyst Technol 2018;24:1811–39. 589 
[14] Sajadi B, Alijani F, Goosen H, van Keulen F. Effect of pressure on nonlinear dynamics and instability of electrically actuated circular micro-plates. 590 

Nonlinear Dyn 2018;91:2157–70. 591 
[15] Bourouina T, Grandchamp J-P. Modeling micropumps with electrical equivalent networks. J Micromech Microeng 1996;6:398. 592 
[16] Cozma A, Puers R. Electrostatic actuation as a self-testing method for silicon pressure sensors. Sens Actuators, A 1997;60:32–6. 593 
[17] Saif M, Alaca BE, Sehitoglu H. Analytical modeling of electrostatic membrane actuator for micro pumps. J Microelectromech Syst 1999;8:335–45. 594 
[18] Yang F. Electromechanical instability of microscale structures. J Appl Phys 2002;92:2789–94. 595 
[19] Rajalingham C, Bhat R. Influence of an electric field on diaphragm stability and vibration in a condenser microphone. J Sound Vib 1998;211:819–27. 596 
[20] Zook J, Burns D, Guckel H, Sniegowski J, Engelstad R, Feng Z. Characteristics of polysilicon resonant microbeams. Sens Actuators, A 1992;35:51–9. 597 
[21] Choi B, Lovell E. Improved analysis of microbeams under mechanical and electrostatic loads. J Micromech Microeng 1997;7:24. 598 
[22] Ahn Y, Guckel H, Zook JD. Capacitive microbeam resonator design. J Micromech Microeng 2001;11:70. 599 
[23] Tilmans HA, Legtenberg R. Electrostatically driven vacuum-encapsulated polysilicon resonators: part II. Theory and performance. Sens Actuators, A 600 

1994;45:67–84. 601 
[24] Ayela F, Fournier T. An experimental study of anharmonic micromachined silicon resonators. Meas Sci Technol 1998;9:1821. 602 
[25] Veijola T, Mattila T, Jaakkola O, Kiihamaki J, Lamminmaki T, Oja A, et al. Large-displacement modelling and simulation of micromechanical electro- 603 

statically driven resonators using the harmonic balance method. In: Proceedings of the Microwave Symposium Digest 20 0 0 IEEE MTT-S International. 604 
IEEE; 20 0 0. p. 99–102. 605 

[26] Konig E, Wachutka G. Analysis of unstable behavior occurring in electro-mechanical microdevices. In: Proceedings of the Modeling Simulation of 606 
Microsystems; 1999. p. 330–3. 607 

[27] Sedighi HM, Koochi A, Daneshmand F, Abadyan M. Non-linear dynamic instability of a double-sided nano-bridge considering centrifugal force and 608 
rarefied gas flow. Int J Non Linear Mech 2015;77:96–106. 609 

[28] Ng T, Jiang T, Li H, Lam K, Reddy J. A coupled field study on the non-linear dynamic characteristics of an electrostatic micropump. J Sound Vib 610 
20 04;273:989–10 06. 611 

[29] Zhao X, Abdel-Rahman EM, Nayfeh AH. A reduced-order model for electrically actuated microplates. J Micromech Microeng 20 04;14:90 0. 612 
[30] Nayfeh AH, Pai PF. Linear and nonlinear structural mechanics. John Wiley & Sons; 2008. 613 
[31] Sarvestani HY, Akbarzadeh A, Mirabolghasemi A. Structural analysis of size-dependent functionally graded doubly-curved panels with engineered 614 

microarchitectures. Acta Mech 2018;229:2675–701. 615 
[32] Taati E, Najafabadi MM, Reddy J. Size-dependent generalized thermoelasticity model for Timoshenko micro-beams based on strain gradient and non- 616 

fourier heat conduction theories. Compos Struct 2014;116:595–611. 617 
[33] Fatikow S, Rembold U. Microsystem technology and microrobotics. Springer Science & Business Media; 2013. 618 
[34] Beni YT, Karimipour I, Abadyan M. Modeling the instability of electrostatic nano-bridges and nano-cantilevers using modified strain gradient theory. 619 

Appl Math Model 2015;39:2633–48. 620 
[35] Karimipour I, Beni YT, Koochi A, Abadyan M. Using couple stress theory for modeling the size-dependent instability of double-sided beam-type 621 

nanoactuators in the presence of Casimir force. J Braz Soc Mech Sci Eng 2016;38:1779–95. 622 
[36] Beni YT, Karimipöur I, Abadyan M. Modeling the effect of intermolecular force on the size-dependent pull-in behavior of beam-type NEMS using 623 

modified couple stress theory. J Mech Sci Technol 2014;28:3749–57. 624 
[37] Eringen AC, Edelen D. On nonlocal elasticity. Int J Eng Sci 1972;10:233–48. 625 
[38] Eringen AC. Theory of micropolar elasticity. In: Microcontinuum field theories. Springer; 1999. p. 101–248. 626 

Please cite this article as: I. Karimipour, Y.T. Beni and A.H. Akbarzadeh, Size-dependent nonlinear forced vibration and 

dynamic stability of electrically actuated micro-plates, Commun Nonlinear Sci Numer Simulat, https://doi.org/10.1016/j. 

cnsns.2019.104856 

https://doi.org/10.1016/j.cnsns.2019.104856


I. Karimipour, Y.T. Beni and A.H. Akbarzadeh / Commun Nonlinear Sci Numer Simulat xxx (xxxx) xxx 33 

ARTICLE IN PRESS 

JID: CNSNS [m3Gsc; May 23, 2019;14:20 ] 

[39] Karimipour I, Kanani A, Koochi A, Keivani M, Abadyan M. Modeling the electromechanical behavior and instability threshold of NEMS bridge in 627 
electrolyte considering the size dependency and dispersion forces. Phys E 2015;74:140–50. 628 

[40] Sedighi HM. Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory. 629 
Acta Astronaut 2014;95:111–23. 630 

[41] Shojaeian M, Beni YT, Ataei H. Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory. Acta Astronaut 631 
2016;118:62–71. 632 

[42] Ghobadi A, Beni YT, Golestanian H. Size dependent thermo-electro-mechanical nonlinear bending analysis of flexoelectric nano-plate in the presence 633 
of magnetic field. Int J Mech Sci 2019;152:118–37. 634 

[43] Hamilton J, Wolfer W. Theories of surface elasticity for nanoscale objects. Surf Sci 2009;603:1284–91. 635 
[44] Sedighi HM, Bozorgmehri A. Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface 636 

effects using modified couple stress theory. Acta Mech 2016;227:1575–91. 637 
[45] Tsiatas GC. A new Kirchhoff plate model based on a modified couple stress theory. Int J Solids Struct 2009;46:2757–64. 638 
[46] Yin L, Qian Q, Wang L, Xia W. Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech Solida Sin 2010;23:386–93. 639 
[47] Jomehzadeh E, Noori H, Saidi A. The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Phys. E 2011;43:877–640 

83. 641 
[48] Asghari M. Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. Int J Eng Sci 2012;51:292–309. 642 
[49] Wang Y-G, Lin W-H, Zhou C-L. Nonlinear bending of size-dependent circular microplates based on the modified couple stress theory. Arch Appl Mech 643 

2014;84:391–400. 644 
[50] Akgöz B, Civalek Ö. Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 645 

2013;48:863–73. 646 
[51] Askari AR, Tahani M. Analytical determination of size-dependent natural frequencies of fully clamped rectangular microplates based on the modified 647 

couple stress theory. J Mech Sci Technol 2015;29:2135–45. 648 
[52] Askari AR, Tahani M. Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates based on the modified couple stress theory. Phys 649 

E 2017;86:262–74. 650 
[53] Tahani M, Askari AR, Mohandes Y, Hassani B. Size-dependent free vibration analysis of electrostatically pre-deformed rectangular micro-plates based 651 

on the modified couple stress theory. Int J Mech Sci 2015;94:185–98. 652 
[54] Zhang B, He Y, Liu D, Gan Z, Shen L. A non-classical Mindlin plate finite element based on a modified couple stress theory. Eur J Mech A/Solids 653 

2013;42:63–80. 654 
[55] Ansari R, Shojaei MF, Mohammadi V, Gholami R, Darabi M. Nonlinear vibrations of functionally graded Mindlin microplates based on the modified 655 

couple stress theory. Compos Struct 2014;114:124–34. 656 
[56] Lou J, He L. Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress 657 

theory. Compos Struct 2015;131:810–20. 658 
[57] Thai H-T, Choi D-H. Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos Struct 659 

2013;95:142–53. 660 
[58] Thai H-T, Kim S-E. A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos Part B Eng 661 

2013;45:1636–45. 662 
[59] Thai H-T, Vo TP. A size-dependent functionally graded sinusoidal plate model based on a modified couple stress theory. Compos Struct 2013;96:376–663 

83. 664 
[60] Reddy JN. Mechanics of laminated composite plates and shells: theory and analysis. CRC press; 2004. 665 
[61] Reddy JN. Theory and analysis of elastic plates and shells. CRC press; 2006. 666 
[62] Nayfeh AH, Mook DT. Nonlinear oscillations. John Wiley & Sons; 2008. 667 
[63] Alijani F, Amabili M. Effect of thickness deformation on large-amplitude vibrations of functionally graded rectangular plates. Compos Struct 668 

2014;113:89–107. 669 
[64] Alijani F, Amabili M. Nonlinear vibrations of laminated and sandwich rectangular plates with free edges. Part 1: theory and numerical simulations. 670 

Compos Struct 2013;105:422–36. 671 
[65] Younis MI. MEMS linear and nonlinear statics and dynamics. Springer Science & Business Media; 2011. 672 
[66] Zietlow DW, Griffin DC, Moore TR. The limitations on applying classical thin plate theory to thin annular plates clamped on the inner boundary. AIP 673 

Adv 2012;2:042103. 674 
[67] Yamaki N. Influence of large amplitudes on flexural vibrations of elastic plates. ZAMM J Appl Math Mech Z für Angew Math und Mech 1961;41:501–10. 675 
[68] Kung G, Pao Y-H. Nonlinear flexural vibrations of a clamped circular plate. J Appl Mech 1972;39:1050–4. 676 
[69] Hadian J, Nayfeh A. Modal interaction in circular plates. J Sound Vib 1990;142:279–92. 677 
[70] Shi Y, Mei C. A finite element time domain modal formulation for large amplitude free vibrations of beams and plates. J Sound Vib 1996;193:453–64. 678 
[71] Benamar R, Bennouna M, White R. The effects of large vibration amplitudes on the mode shapes and natural frequencies of thin elastic structures, 679 

part II: fully clamped rectangular isotropic plates. J Sound Vib 1993;164:295–316. 680 
[72] Amabili M. Nonlinear vibrations and stability of shells and plates. Cambridge University Press; 2008. 681 
[73] Chia C-Y. Nonlinear analysis of plates. McGraw-Hill International Book Company; 1980. 682 
[74] Farokhi H, Ghayesh MH. Supercritical nonlinear parametric dynamics of Timoshenko microbeams. Commun Nonlinear Sci Numer Simul 2018;59:592–683 

605. 684 
[75] Ghayesh MH. Dynamical analysis of multilayered cantilevers. Commun Nonlinear Sci Numer Simul 2019;71:244–53. 685 
[76] Yeh F, Liu W. Nonlinear analysis of rectangular orthotropic plates. Int J Mech Sci 1991;33:563–78. 686 
[77] Suleiman OME. Nonlinear analysis of rectangular laminated plates, Germany: Lap Lambert Academic Publishing; 2015. ISBN:(978-3-659-76787-6). 687 
[78] Ma H, Gao X-L, Reddy J. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 688 

2008;56:3379–91. 689 
[79] Nejad MZ, Hadi A, Rastgoo A. Buckling analysis of arbitrary two-directional functionally graded Euler–Bernoulli nano-beams based on nonlocal elas- 690 

ticity theory. Int J Eng Sci 2016;103:1–10. 691 
[80] Askes H, Aifantis EC. Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element 692 

implementations and new results. Int J Solids Struct 2011;48:1962–90. 693 
[81] Yang F, Chong A, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. Int J Solids Struct 2002;39:2731–43. 694 
[82] Reddy J, Kim J. A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos Struct 2012;94:1128–43. 695 
[83] Hadjesfandiari, AR, Hajesfandiari, A, Dargush, GF. Pure plate bending in couple stress theories, arXiv: 160602954 (2016). 696 
[84] Hadjesfandiari, AR, Dargush, GF. An assessment of higher gradient theories from a continuum mechanics perspective, arXiv: 181006977 (2018). 697 
[85] Rafii-Tabar H, Shodja H, Darabi M, Dahi A. Molecular dynamics simulation of crack propagation in FCC materials containing clusters of impurities. 698 

Mech Mater 2006;38:243–52. 699 
[86] Reddy JN. Energy principles and variational methods in applied mechanics. John Wiley & Sons; 2017. 700 
[87] SHAH, MAA, Rezazadeh, G, Shabani, R. Effect of electric potential distribution on electromechanical behavior of a piezoelectrically sandwiched micro- 701 

beam. (2012). Q3 702 

Please cite this article as: I. Karimipour, Y.T. Beni and A.H. Akbarzadeh, Size-dependent nonlinear forced vibration and 

dynamic stability of electrically actuated micro-plates, Commun Nonlinear Sci Numer Simulat, https://doi.org/10.1016/j. 

cnsns.2019.104856 

https://doi.org/10.1016/j.cnsns.2019.104856

	Size-dependent nonlinear forced vibration and dynamic stability of electrically actuated micro-plates
	1 Introduction
	2 Size-dependent micro-plate model
	3 Solution procedure
	3.1 Static case
	3.1.1 Galerkin’s method for clamped micro-plate

	3.2 Vibrational of micro-plate due to the harmonic electrical force
	3.3 Non-dimensionalization of the governing equations
	3.3.1 Non-dimensionalization of the boundary conditions


	4 Obtaining a set of ordinary differential equation
	5 Result and discussion
	5.1 Validation
	5.2 Time response and phase portrait
	5.3 Static case
	5.3.1 A semi-analytical solution for the transient response of micro-plate

	5.4 Dynamic response of rectangular micro-plate under electrical excitation
	5.4.1 Primary resonance using multiple scale method considering a weak forcing function
	5.4.2 Secondary resonance
	5.4.3 Superharmonic resonance
	5.4.4 Subharmonic resonance


	6 Conclusions
	Acknowledgements
	Appendix A: Brief Review on Modified Couple Stress Theory (MCST)
	Appendix B
	Appendix C
	Appendix D
	References


